Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2012 (2012), Article ID 919832, 8 pages
Research Article

Protein Oxidative Damage at the Crossroads of Cellular Senescence, Aging, and Age-Related Diseases

Laboratoire de Biologie Cellulaire du Vieillissement, UR4-IFR83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France

Received 30 July 2012; Accepted 14 September 2012

Academic Editor: Paula Ludovico

Copyright © 2012 Martin A. Baraibar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Protein damage mediated by oxidation, protein adducts formation with advanced glycated end products and with products of lipid peroxidation, has been implicated during aging and age-related diseases, such as neurodegenerative diseases. Increased protein modification has also been described upon replicative senescence of human fibroblasts, a valid model for studying aging in vitro. However, the mechanisms by which these modified proteins could impact on the development of the senescent phenotype and the pathogenesis of age-related diseases remain elusive. In this study, we performed in silico approaches to evidence molecular actors and cellular pathways affected by these damaged proteins. A database of proteins modified by carbonylation, glycation, and lipid peroxidation products during aging and age-related diseases was built and compared to those proteins identified during cellular replicative senescence in vitro. Common cellular pathways evidenced by enzymes involved in intermediate metabolism were found to be targeted by these modifications, although different tissues have been examined. These results underscore the potential effect of protein modification in the impairment of cellular metabolism during aging and age-related diseases.