Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013 (2013), Article ID 136570, 10 pages
http://dx.doi.org/10.1155/2013/136570
Research Article

Study of Possible Mechanisms Involved in the Inhibitory Effects of Coumarin Derivatives on Neutrophil Activity

1Institute of Experimental Pharmacology and Toxicology Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
2Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v. v. i., Flemingovo náměsti 2, 161 10 Prague, Czech Republic
3Institute of Chemical Technology Prague, Technická 5, 166 28 Prague, Czech Republic

Received 22 July 2013; Revised 17 October 2013; Accepted 17 October 2013

Academic Editor: David Vauzour

Copyright © 2013 Katarína Drábiková et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Riveiro, A. Moglioni, R. Vazquez et al., “Structural insights into hydroxycoumarin-induced apoptosis in U-937 cells,” Bioorganic and Medicinal Chemistry, vol. 16, no. 5, pp. 2665–2675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Belluti, G. Fontana, L. D. Bo, N. Carenini, C. Giommarelli, and F. Zunino, “Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: identification of novel proapoptotic agents,” Bioorganic and Medicinal Chemistry, vol. 18, no. 10, pp. 3543–3550, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Kostova, S. Bhatia, P. Grigorov et al., “Coumarins as antioxidants,” Current Medicinal Chemistry, vol. 18, no. 25, pp. 3929–3951, 2011. View at Google Scholar · View at Scopus
  4. K. V. Sashidhara, A. Kumar, R. P. Dodda et al., “Coumarin-trioxane hybrids: synthesis and evaluation as a new class of antimalarial scaffolds,” Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 12, pp. 3926–3930, 2012. View at Publisher · View at Google Scholar
  5. R. Ramasamy, M. Maqbool, A. L. Mohamed, and R. M. Noah, “Elevated neutrophil respiratory burst activity in essential hypertensive patients,” Cellular Immunology, vol. 263, no. 2, pp. 230–234, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Ciz, P. Denev, M. Kratchanova, O. Vasicek, G. Ambrozova, and A. Lojek, “Flavonoids inhibit the respiratory burst of neutrophils in mammals,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 181295, 6 pages, 2012. View at Publisher · View at Google Scholar
  7. A. I. Khlebnikov, I. A. Schepetkin, N. G. Domina, L. N. Kirpotina, and M. T. Quinn, “Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems,” Bioorganic and Medicinal Chemistry, vol. 15, no. 4, pp. 1749–1770, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. K. A. Gauss, L. K. Nelson-Overton, D. W. Siemsen, Y. Gao, F. R. DeLeo, and M. T. Quinn, “Role of NF-κB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-α,” Journal of Leukocyte Biology, vol. 82, no. 3, pp. 729–741, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Raad, M. H. Paclet, T. Boussetta et al., “Regulation of the phagocyte NADPH oxidase activity: phosphorylation of gp91phox/NOX2 by protein kinase C enhances its diaphorase activity and binding to Rac2, p67phox, and p47phox,” FASEB Journal, vol. 23, no. 4, pp. 1011–1022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Bylund, K. L. Brown, C. Movitz, C. Dahlgren, and A. Karlsson, “Intracellular generation of superoxide by the phagocyte NADPH oxidase: how, where, and what for?” Free Radical Biology and Medicine, vol. 49, no. 12, pp. 1834–1845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Karlsson and C. Dahlgren, “Assembly and activation of the neutrophil NADPH oxidase in granule membranes,” Antioxidants and Redox Signaling, vol. 4, no. 1, pp. 49–60, 2002. View at Google Scholar · View at Scopus
  12. J. D. Matute, A. A. Arias, N. A. M. Wright et al., “A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40phox and selective defects in neutrophil NADPH oxidase activity,” Blood, vol. 114, no. 15, pp. 3309–3315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Björnsdottir, D. Granfeldt, A. Welin, J. Bylund, and A. Karlsson, “Inhibition of phospholipase A2 abrogates intracellular processing of NADPH-oxidase derived reactive oxygen species in human neutrophils,” Experimental Cell Research, vol. 319, no. 5, pp. 761–774, 2013. View at Publisher · View at Google Scholar
  14. G. Nimeri, M. Majeed, H. Elwing, L. Öhman, J. Wetterö, and T. Bengtsson, “Oxygen radical production in neutrophils interacting with platelets and surface-immobilized plasma proteins: role of tyrosine phosphorylation,” Journal of Biomedical Materials Research A, vol. 67, no. 2, pp. 439–447, 2003. View at Google Scholar · View at Scopus
  15. J. El-Benna, P. M. C. Dang, M. A. Gougerot-Pocidalo, J. C. Marie, and F. Braut-Boucher, “p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases,” Experimental and Molecular Medicine, vol. 41, no. 4, pp. 217–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. N. J. Hong, G. B. Silva, and J. L. Garvin, “PKC-α mediates flow-stimulated superoxide production in thick ascending limbs,” American Journal of Physiology—Renal Physiology, vol. 298, no. 4, pp. F885–F891, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. M. Korchak, L. B. Dorsey, H. Li, D. Mackie, and L. E. Kilpatrick, “Selective roles for α-PKC in positive signaling for O2-generation and calcium mobilization but not elastase release in differentiated HL60 cells,” Biochimica et Biophysica Acta, vol. 1773, no. 3, pp. 440–449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. B. Nixon and L. C. McPhail, “Protein kinase C (PKC) isoforms translocate to triton-insoluble fractions in stimulated human neutrophils: correlation of conventional PKC with activation of NADPH oxidase,” Journal of Immunology, vol. 163, no. 8, pp. 4574–4582, 1999. View at Google Scholar · View at Scopus
  19. A. Bertram and K. Ley, “Protein kinase C isoforms in neutrophil adhesion and activation,” Archivum Immunologiae et Therapiae Experimentalis, vol. 59, no. 2, pp. 79–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Vrba, Z. Dvořák, J. Ulrichová, and M. Modrianský, “Conventional protein kinase C isoenzymes undergo dephosphorylation in neutrophil-like HL-60 cells treated by chelerythrine or sanguinarine,” Cell Biology and Toxicology, vol. 24, no. 1, pp. 39–53, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. E. Kilpatrick, S. Sun, H. Li, T. C. Vary, and H. M. Korchak, “Regulation of TNF-induced oxygen radical production in human neutrophils: role of δ-PKC,” Journal of Leukocyte Biology, vol. 87, no. 1, pp. 153–164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. G. E. Brown, M. Q. Stewart, H. Liu, V. L. Ha, and M. B. Yaffe, “A novel assay system implicates PtdIns(3,4)P2, PtdIns(3)P, and PKCδ in intracellular production of reactive oxygen species by the NADPH oxidase,” Molecular Cell, vol. 11, no. 1, pp. 35–47, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Drábiková, T. Perečko, R. Nosáľ et al., “Different effect of two synthetic coumarin-stilbene hybrid compounds on phagocyte activity,” Neuroendocrinology Letters, vol. 31, pp. 73–78, 2010. View at Google Scholar
  24. V. Jančinová, T. Perečko, R. Nosáľ, D. Košťálová, K. Bauerová, and K. Drábiková, “Decreased activity of neutrophils in the presence of diferuloylmethane (curcumin) involves protein kinase C inhibition,” European Journal of Pharmacology, vol. 612, pp. 161–166, 2009. View at Google Scholar
  25. R. Nosáľ, T. Perečko, V. Jančinová, K. Drábiková, J. Harmatha, and K. Sviteková, “Naturally appearing N-feruloylserotonin isomers suppress oxidative burst of human neutrophils at the protein kinase C level,” Pharmacological Reports, vol. 63, pp. 790–798, 2011. View at Google Scholar
  26. K. Drábiková, T. Perečko, R. Nosál et al., “Glucomannan reduces neutrophil free radical production in vitro and in rats with adjuvant arthritis,” Pharmacological Research, vol. 59, pp. 399–403, 2009. View at Google Scholar
  27. V. Jančinová, T. Perečko, R. Nosáľ, J. Harmatha, J. Šmidrkal, and K. Drábiková, “The natural stilbenoid pinosylvin and activated neutrophils: effects on oxidative burst, protein kinase C, apoptosis and efficiency in adjuvant arthritis,” Acta Pharmacologica Sinica, vol. 33, pp. 1285–1292, 2012. View at Google Scholar
  28. K. Drábiková, V. Jančinová, R. Nosáľ, J. Pečivová, T. Mačičková, and P. Turčáni, “Inibitory effect of stobadine on FMLP-induced chemiluminescence in human whole blood and isolated polymorphonuclear leukocytes,” Luminescence, vol. 22, pp. 67–71, 2007. View at Google Scholar
  29. Z. Varga, E. Kosaras, E. Komodi et al., “Effects of tocopherols and 2,2′-carboxyethyl hydroxychromans on phorbol-ester-stimulated neutrophils,” Journal of Nutritional Biochemistry, vol. 19, no. 5, pp. 320–327, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. D. E. Stevenson and R. D. Hurst, “Polyphenolic phytochemicals—just antioxidants or much more?” Cellular and Molecular Life Sciences, vol. 64, no. 22, pp. 2900–2916, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. K. B. Pandey and S. I. Rizvi, “Plant polyphenols as dietary antioxidants in human health and disease,” Oxidative Medicine and Cellular Longevity, vol. 2, no. 5, pp. 270–278, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. M. E. Obrenovich, N. G. Nair, A. Beyaz, G. Aliev, and V. P. Reddy, “The role of polyphenolic antioxidants in health, disease, and aging,” Rejuvenation Research, vol. 13, no. 6, pp. 631–643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Štefek, “Natural flavonoids as potential multifunctional agents in prevention of diabetic cataract,” Interdisciplinary Toxicology, vol. 4, no. 2, pp. 69–77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Perečko, V. Jančinová, K. Drábiková, R. Nosál', and J. Harmatha, “Structure-efficiency relationship in derivatives of stilbene. Comparison of resveratrol, pinosylvin and pterostilbene,” Neuroendocrinology Letters, vol. 29, no. 5, pp. 802–805, 2008. View at Google Scholar · View at Scopus
  35. T. Perečko, K. Drábiková, R. Nosáľ, J. Harmatha, and V. Jančinová, “Pharmacological modulation of activated neutrophils by natural polyphenols,” in Recent Research Developments in Pharmacology, S. G. Pandalai, Ed., vol. 2, pp. 27–67, Research Signpost, Trivandrum, India, 2011. View at Google Scholar
  36. C. Dahlgren and A. Karlsson, “Respiratory burst in human neutrophils,” Journal of Immunological Methods, vol. 232, no. 1-2, pp. 3–14, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. L. M. Kabeya, A. A. de Marchi, A. Kanashiro et al., “Inhibition of horseradish peroxidase catalytic activity by new 3-phenylcoumarin derivatives: synthesis and structure-activity relationships,” Bioorganic and Medicinal Chemistry, vol. 15, no. 3, pp. 1516–1524, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. M. F. Andrade, L. M. Kabeya, A. E. Azzolini et al., “3-Phenylcoumarin derivatives selectively modulate different steps of reactive oxygen species production by immune complex-stimulated human neutrophils,” International Immunopharmacology, vol. 1, pp. 387–394, 2013. View at Google Scholar
  39. J. Pečivová, T. Mačičková, J. Harmatha, K. Sviteková, and R. Nosáľ, “In vitro effect of pinosylvin and pterostilbene on human neutrophils,” Interdisciplinary Toxicology, vol. 3, article A73, 2010. View at Google Scholar
  40. Z. Varga, I. Seres, E. Nagy et al., “Structure prerequisite for antioxidant activity of silybin in different biochemical systems in vitro,” Phytomedicine, vol. 13, no. 1-2, pp. 85–93, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. H. C. Lin, S. H. Tsai, C. S. Chen et al., “Structure-activity relationship of coumarin derivatives on xanthine oxidase-inhibiting and free radical-scavenging activities,” Biochemical Pharmacology, vol. 75, no. 6, pp. 1416–1425, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. K. F. Devienne, A. F. Cálgaro-Helena, D. J. Dorta et al., “Antioxidant activity of isocoumarins isolated from Paepalanthus bromelioides on mitochondria,” Phytochemistry, vol. 68, no. 7, pp. 1075–1080, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. C. G. Fraga, M. Galleano, S. V. Verstraeten, and P. I. Oteiza, “Basic biochemical mechanisms behind the health benefits of polyphenols,” Molecular Aspects of Medicine, vol. 31, no. 6, pp. 435–445, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Nosáľ, T. Perečko, V. Jančinová, K. Drábiková, J. Harmatha, and K. Sviteková, “Suppression of oxidative burst in human neutrophils with the naturally occurring serotonin derivative isomer from Leuzea carthamoides,” Neuroendocrinology Letters, vol. 31, pp. 69–72, 2010. View at Google Scholar
  45. V. Jančinová, T. Perečko, K. Drábiková, R. Nosáľ, and K. Sviteková, “Piceatannol, a natural analogue of resveratrol, inhibits oxidative burst of human neutrophils,” Interdisciplinary Toxicology, vol. 4, pp. A35–A36, 2011. View at Google Scholar
  46. A. P. Bouin, N. Grandvaux, P. V. Vignais, and A. Fuchs, “p40(phox) is phosphorylated on threonine 154 and serine 315 during activation of the phagocyte NADPH oxidase: implication of a protein kinase C-type kinase in the phosphorylation process,” Journal of Biological Chemistry, vol. 273, no. 46, pp. 30097–30103, 1998. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Someya, H. Nunoi, T. Hasebe, and I. Nagaoka, “Phosphorylation of p40-phox during activation of neutrophil NADPH oxidase,” Journal of Leukocyte Biology, vol. 66, no. 5, pp. 851–857, 1999. View at Google Scholar · View at Scopus