Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013 (2013), Article ID 234179, 10 pages
http://dx.doi.org/10.1155/2013/234179
Research Article

Comparative Effects of Bone Marrow Mesenchymal Stem Cells on Lipopolysaccharide-Induced Microglial Activation

1Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
2Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11221, Taiwan
3Center for Neural Regeneration, Neurological Institute, Taipei Veterans General Hospital, Taipei 11221, Taiwan
4Department of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
5Department of Education and Research, Taipei City Hospital, Taipei 11221, Taiwan
6Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
7Institute of Brain Science, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan

Received 6 December 2012; Accepted 14 February 2013

Academic Editor: Anantharaman Muthuswamy

Copyright © 2013 Fan-Wei Tseng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. Bethea and W. D. Dietrich, “Targeting the host inflammatory response in traumatic spinal cord injury,” Current Opinion in Neurology, vol. 15, no. 3, pp. 355–360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. F. M. Bareyre and M. E. Schwab, “Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays,” Trends in Neurosciences, vol. 26, no. 10, pp. 555–563, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Cartier, O. Hartley, M. Dubois-Dauphin, and K. H. Krause, “Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases,” Brain Research Reviews, vol. 48, no. 1, pp. 16–42, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. U. Kim and J. De Vellis, “Microglia in health and disease,” Journal of Neuroscience Research, vol. 81, no. 3, pp. 302–313, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. M. L. Block and J. S. Hong, “Chronic microglial activation and progressive dopaminergic neurotoxicity,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1127–1132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Minghetti, “Role of inflammation in neurodegenerative diseases,” Current Opinion in Neurology, vol. 18, no. 3, pp. 315–321, 2005. View at Google Scholar · View at Scopus
  7. H. Ohtaki, J. H. Ylostalo, J. E. Foraker et al., “Stem/progenitor cells from bone marrow decrease neuronal death in global ischemia by modulation of inflammatory/immune responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 38, pp. 14638–14643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. P. Hofstetter, E. J. Schwarz, D. Hess et al., “Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 4, pp. 2199–2204, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. J. R. Munoz, B. R. Stoutenger, A. P. Robinson, J. L. Spees, and D. J. Prockop, “Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18171–18176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. F. Tzeng and H. Y. Huang, “Downregulation of inducible nitric oxide synthetase by neurotrophin-3 in microglia,” Journal of Cellular Biochemistry, vol. 90, no. 2, pp. 227–233, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. Tsai, H. A. Pan, D. Y. Liou, C. F. Weng, B. J. Hoffer, and H. Cheng, “Adenoviral gene transfer of bone morphogenetic protein-7 enhances functional recovery after sciatic nerve injury in rats,” Gene Therapy, vol. 17, no. 10, pp. 1214–1224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. Tsai and E. H. Lee, “Differences in the disposition and toxicity of 1-methyl-4-phenylpyridinium in cultured rat and mouse astrocytes,” GLIA, vol. 12, no. 4, pp. 329–335, 1994. View at Google Scholar · View at Scopus
  13. M. J. Tsai and E. H. Y. Lee, “Nitric oxide donors protect cultured rat astrocytes from 1-methyl-4- phenylpyridinium-induced toxicity,” Free Radical Biology and Medicine, vol. 24, no. 5, pp. 705–713, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Tsai, C. F. Weng, S. K. Shyue et al., “Dual effect of adenovirus-mediated transfer of BMP7 in mixed neuron-glial cultures: neuroprotection and cellular differentiation,” Journal of Neuroscience Research, vol. 85, no. 13, pp. 2950–2959, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Storch and J. Schwarz, “Neural stem cells and Parkinson's disease,” Journal of Neurology, Supplement, vol. 249, no. 3, pp. III30–III32, 2002. View at Google Scholar · View at Scopus
  16. A. Hermann, R. Gastl, S. Liebau et al., “Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells,” Journal of Cell Science, vol. 117, no. 19, pp. 4411–4422, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Q. Li, S. Sanlioglu, S. Li, T. Ritchie, L. Oberley, and J. F. Engelhardt, “GPx-1 gene delivery modulates NFκB activation following diverse environmental injuries through a specific subunit of the IKK complex,” Antioxidants and Redox Signaling, vol. 3, no. 3, pp. 415–432, 2001. View at Google Scholar · View at Scopus
  18. H. Y. Hsu and M. H. Wen, “Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression,” Journal of Biological Chemistry, vol. 277, no. 25, pp. 22131–22139, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Gerdoni, B. Gallo, S. Casazza et al., “Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis,” Annals of Neurology, vol. 61, no. 3, pp. 219–227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Guo, G. S. Lin, C. Y. Bao, Z. M. Hu, and M. Y. Hu, “Anti-inflammation role for mesenchymal stem cells transplantation in myocardial infarction,” Inflammation, vol. 30, no. 3-4, pp. 97–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. U. K. Hanisch and H. Kettenmann, “Microglia: active sensor and versatile effector cells in the normal and pathologic brain,” Nature Neuroscience, vol. 10, no. 11, pp. 1387–1394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M. D. Sternlicht and Z. Werb, “How matrix metalloproteinases regulate cell behavior,” Annual Review of Cell and Developmental Biology, vol. 17, pp. 463–516, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Buss, K. Pech, B. A. Kakulas et al., “Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury,” BMC Neurology, vol. 7, article 17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. J. A. Wang, R. H. Luo, X. Zhang et al., “Bone marrow mesenchymal stem cell transplantation combined with perindopril treatment attenuates infarction remodelling in a rat model of acute myocardial infarction,” Journal of Zhejiang University Science B, vol. 7, no. 8, pp. 641–647, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Nagase, R. Visse, and G. Murphy, “Structure and function of matrix metalloproteinases and TIMPs,” Cardiovascular Research, vol. 69, no. 3, pp. 562–573, 2006. View at Publisher · View at Google Scholar · View at Scopus