Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 238734, 7 pages
http://dx.doi.org/10.1155/2013/238734
Research Article

Hemeoxygenase-1 Mediates an Adaptive Response to Spermidine-Induced Cell Death in Human Endothelial Cells

Department of Microbiology, School of Medicine, Kyung Hee University, No. 1 Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Republic of Korea

Received 5 April 2013; Revised 2 July 2013; Accepted 9 July 2013

Academic Editor: Hun-Taeg Chung

Copyright © 2013 Hana Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Igarashi and K. Kashiwagi, “Polyamines: mysterious modulators of cellular functions,” Biochemical and Biophysical Research Communications, vol. 271, no. 3, pp. 559–564, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Seiler, J. G. Delcros, and J. P. Moulinoux, “Polyamine transport in mammalian cells. An update,” The International Journal of Biochemistry and Cell Biology, vol. 28, no. 8, pp. 843–861, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. Kakinuma, K. Hoshino, and K. Igarashi, “Characterization of the inducible polyamine transporter in bovine lymphocytes,” European Journal of Biochemistry, vol. 176, no. 2, pp. 409–414, 1988. View at Google Scholar · View at Scopus
  4. C. W. Tabor, H. Tabor, and U. Bachrach, “Identification of the aminoaldehydes produced by the oxidation of spermine and spermidine with purified plasma amine oxidase,” The Journal of Biological Chemistry, vol. 239, no. 7, pp. 2194–2203, 1964. View at Google Scholar · View at Scopus
  5. E. Schenkel, J. G. Dubois, M. Helson-Cambier, and M. Hanocq, “Cytotoxicity of polyamines to Amoeba proteus: role of polyamine oxidase,” Cell Biology and Toxicology, vol. 12, no. 1, pp. 1–9, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Pledgie, Y. Huang, A. Hacker et al., “Spermine oxidase SMO(PAOh1), not N1-acetylpolyamine oxidase PAO, is the primary source of Cytotoxic H2O2 in polyamine analogue-treated human breast cancer cell lines,” Journal of Biological Chemistry, vol. 280, no. 48, pp. 39843–39851, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. D. Maines, G. M. Trakshel, and R. K. Kutty, “Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible,” The Journal of Biological Chemistry, vol. 261, no. 1, pp. 411–419, 1986. View at Google Scholar · View at Scopus
  8. W. K. McCoubrey Jr., T. J. Huang, and M. D. Maines, “Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3,” European Journal of Biochemistry, vol. 247, no. 2, pp. 725–732, 1997. View at Google Scholar · View at Scopus
  9. Y.-J. Surh, J. K. Kundu, M.-H. Li, H.-K. Na, and Y.-N. Cha, “Role of Nrf2-mediated heme oxygenase-1 upregulation in adaptive survival response to nitrosative stress,” Archives of Pharmacal Research, vol. 32, no. 8, pp. 1163–1176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. M. Zheng, S. K. Kim, Y. Joe et al., “Sensing endoplasmic reticulum stress by protein kinase RNA-like endoplasmic reticulum kinase promotes adaptive mitochondrial DNA biogenesis and cell survival via heme oxygenase-1/carbon monoxide activity,” FASEB Journal, vol. 26, no. 6, pp. 2558–2568, 2012. View at Publisher · View at Google Scholar
  11. M. Kobayashi and M. Yamamoto, “Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation,” Antioxidants and Redox Signaling, vol. 7, no. 3-4, pp. 385–394, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Itoh, N. Wakabayashi, Y. Katoh et al., “Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain,” Genes and Development, vol. 13, no. 1, pp. 76–86, 1999. View at Google Scholar · View at Scopus
  13. D. E. Barañano, M. Rao, C. D. Ferris, and S. H. Snyder, “Biliverdin reductase: a major physiologic cytoprotectant,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 16093–16098, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Constantin, A. J. Choi, S. M. Cloonan, and S. W. Ryter, “Therapeutic potential of heme oxygenase-1/carbon monoxide in lung disease,” International Journal of Hypertension, vol. 2012, Article ID 859235, 19 pages, 2012. View at Publisher · View at Google Scholar
  15. J. Deshane, M. Wright, and A. Agarwal, “Heme oxygenase-1 expression in disease states,” Acta Biochimica Polonica, vol. 52, no. 2, pp. 273–284, 2005. View at Google Scholar · View at Scopus
  16. C. M. Terry, J. A. Clikeman, J. R. Hoidal, and K. S. Callahan, “Effect of tumor necrosis factor-α and interleukin-1α on heme oxygenase-1 expression in human endothelial cells,” American Journal of Physiology, vol. 274, no. 3, pp. H883–H891, 1998. View at Google Scholar · View at Scopus
  17. S. I. Jeong, S. E. Lee, H. Yang, C.-S. Park, Y.-H. Jin, and Y. S. Park, “Effect of α,β-unsaturated aldehydes on endothelial cell growth in bacterial cellulose for vascular tissue engineering,” Molecular & Cellular Toxicology, vol. 8, no. 2, pp. 119–126, 2012. View at Google Scholar
  18. S. E. Lee, H. Yang, S. I. Jeong, Y. H. Jin, C. S. Park, and Y. S. Park, “Induction of heme oxygenase-1 inhibits cell death in crotonaldehyde-stimulated HepG2 cells via the PKC-δ -p38 -Nrf2 pathway,” PLoS ONE, vol. 7, no. 7, article e41676, 2012. View at Publisher · View at Google Scholar
  19. Y. S. Park, J. Kim, Y. Misonou et al., “Acrolein induces cyclooxygenase-2 and prostaglandin production in human umbilical vein endothelial cells: roles of p38 MAP kinase,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 6, pp. 1319–1325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. E. Lee, S. I. Jeong, G.-D. Kim et al., “Upregulation of heme oxygenase-1 as an adaptive mechanism for protection against crotonaldehyde in human umbilical vein endothelial cells,” Toxicology Letters, vol. 201, no. 3, pp. 240–248, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Yang, S. E. Lee, S. I. Jeong, C.-S. Park, Y.-H. Jin, and Y. S. Park, “Up-regulation of heme oxygenase-1 by Korean red ginseng water extract as a cytoprotective efect in human endothelial cells,” Journal of Ginseng Research, vol. 35, no. 3, pp. 352–359, 2011. View at Google Scholar · View at Scopus
  22. W. A. Gahl and H. C. Pitot, “Polyamine degradation in foetal and adult bovine serum,” Biochemical Journal, vol. 202, no. 3, pp. 603–611, 1982. View at Google Scholar · View at Scopus
  23. H. Tamura, K. Horiike, H. Fukuda, and T. Watanabe, “Kinetic studies on the inhibition mechanism of diamine oxidase from porcine kidney by aminoguanidine,” The Journal of Biochemistry, vol. 105, no. 2, pp. 299–306, 1989. View at Google Scholar · View at Scopus
  24. E. Agostinelli, G. Arancia, L. D. Vedova et al., “The biological functions of polyamine oxidation products by amine oxidases: perspectives of clinical applications,” Amino Acids, vol. 27, no. 3-4, pp. 347–358, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Y. Seo, A. R. Goh, S. M. Ju et al., “Celastrol induces expression of heme oxygenase-1 through ROS/Nrf2/ARE signaling in the HaCaT cells,” Biochemical and Biophysical Research Communications, vol. 407, no. 3, pp. 535–540, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J.-Y. Kim, H.-J. Cho, J.-J. Sir et al., “Sulfasalazine induces haem oxygenase-1 via ROS-dependent Nrf2 signalling, leading to control of neointimal hyperplasia,” Cardiovascular Research, vol. 82, no. 3, pp. 550–560, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. E. Lee, S. I. Jeong, H. Yang et al., “Extract of Salvia miltiorrhiza (Danshen) induces Nrf2-mediated heme oxygenase-1 expression as a cytoprotective action in RAW 264.7 macrophages,” Journal of Ethnopharmacology, vol. 139, no. 2, pp. 541–548, 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Joe, M. Zheng, H. J. Kim et al., “Salvianolic acid B exerts vasoprotective effects through the modulation of heme oxygenase-1 and arginase activities,” Journal of Pharmacology and Experimental Therapeutics, vol. 341, no. 3, pp. 850–858, 2012. View at Google Scholar
  29. H. M. Wallace, A. V. Fraser, and A. Hughes, “A perspective of polyamine metabolism,” Biochemical Journal, vol. 376, part 1, pp. 1–14, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. F. N. Bolkenius and N. Seiler, “Acetylderivatives as intermediates in polyamine catabolism,” International Journal of Biochemistry, vol. 13, no. 3, pp. 287–292, 1981. View at Google Scholar · View at Scopus
  31. S. Vujcic, P. Diegelman, C. J. Bacchi, D. L. Kramer, and C. W. Porter, “Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin,” Biochemical Journal, vol. 367, part 3, pp. 665–675, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. R. A. Alarcon, “Acrolein. IV. Evidence for the formation of the cytotoxic aldehyde acrolein from enzymatically oxidized spermine or spermidine,” Archives of Biochemistry and Biophysics, vol. 137, no. 2, pp. 365–372, 1970. View at Google Scholar · View at Scopus
  33. K.-S. Min, H.-J. Lee, S.-H. Kim et al., “Hydrogen peroxide induces heme oxygenase-1 and dentin sialophosphoprotein mRNA in human pulp cells,” Journal of Endodontics, vol. 34, no. 8, pp. 983–989, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. U. Warskulat, B. Görg, H.-J. Bidmon, H. W. Müller, F. Schliess, and D. Häussinger, “Ammonia-induced heme oxygenase-1 expression in cultured rat astrocytes and rat brain in vivo,” Glia, vol. 40, no. 3, pp. 324–336, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. J. M. Woo, D. Y. Shin, S. J. Lee et al., “Curcumin protects retinal pigment epithelial cells against oxidative stress via induction of heme oxygenase-1 expression and reduction of reactive oxygen,” Molecular Vision, vol. 18, no. 94-95, pp. 901–908, 2012. View at Google Scholar
  36. W. Durante and A. I. Schafer, “Carbon monoxide and vascular cell function (review),” International Journal of Molecular Medicine, vol. 2, no. 3, pp. 255–262, 1998. View at Google Scholar · View at Scopus
  37. Y.-M. Kim, H.-O. Pae, J. E. Park et al., “Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 14, no. 1, pp. 137–167, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Alam, D. Stewart, C. Touchard, S. Boinapally, A. M. K. Choi, and J. L. Cook, “Nrf2, a cap'n'collar transcription factor, regulates induction of the heme oxygenase-1 gene,” Journal of Biological Chemistry, vol. 274, no. 37, pp. 26071–26078, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. S. E. Purdom-Dickinson, E. V. Sheveleva, H. Sun, and Q. M. Chen, “Translational control of Nrf2 protein in activation of antioxidant response by oxidants,” Molecular Pharmacology, vol. 72, no. 4, pp. 1074–1081, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. G. E. Mann, J. Niehueser-Saran, A. Watson et al., “Nrf2/ARE regulated antioxidant gene expression in endothelial and smooth muscle cells in oxidative stress: implications for atherosclerosis and preeclampsia,” Sheng Li Xue Bao, vol. 59, no. 2, pp. 117–127, 2007. View at Google Scholar
  41. X.-L. Chen, G. Dodd, S. Thomas et al., “Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression,” American Journal of Physiology, vol. 290, no. 5, pp. H1862–H1870, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. M.-K. Kwak, T. W. Kensler, and R. A. Casero Jr., “Induction of phase 2 enzymes by serum oxidized polyamines through activation of Nrf2: effect of the polyamine metabolite acrolein,” Biochemical and Biophysical Research Communications, vol. 305, no. 3, pp. 662–670, 2003. View at Publisher · View at Google Scholar · View at Scopus