Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013 (2013), Article ID 612784, 16 pages
http://dx.doi.org/10.1155/2013/612784
Research Article

A Regulatory Role of NAD Redox Status on Flavin Cofactor Homeostasis in S. cerevisiae Mitochondria

1Istituto di Biomembrane e Bioenergetica, CNR, Via Orabona 4, 70126 Bari, Italy
2Centro Integrato di Ricerca, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
3Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70126 Bari, Italy

Received 21 May 2013; Accepted 18 July 2013

Academic Editor: Cristina Mazzoni

Copyright © 2013 Teresa Anna Giancaspero et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Joosten and W. J. van Berkel, “Flavoenzymes,” Current Opinion in Chemical Biology, vol. 11, no. 2, pp. 195–202, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. P. MacHeroux, B. Kappes, and S. E. Ealick, “Flavogenomics—a genomic and structural view of flavin-dependent proteins,” FEBS Journal, vol. 278, no. 15, pp. 2625–2634, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. D. B. McCormick, “Two interconnected B vitamins: riboflavin and pyridoxine,” Physiological Reviews, vol. 69, no. 4, pp. 1170–1198, 1989. View at Google Scholar · View at Scopus
  4. T. I. Gossmann, M. Ziegler, P. Puntervoll, L. F. De Figueiredo, S. Schuster, and I. Heiland, “NAD+ biosynthesis and salvage—a phylogenetic perspective,” FEBS Journal, vol. 279, pp. 3355–3363, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Chiarugi, C. Dolle, R. Felici, and M. Ziegler, “The NAD metabolome—a key determinant of cancer cell biology,” Nature Reviews Cancer, vol. 12, pp. 741–752, 2012. View at Google Scholar
  6. M. Barile, T. A. Giancaspero, C. Brizio et al., “Biosynthesis of flavin cofactors in man: implications in health and disease,” Current Pharmaceutical Design, vol. 19, pp. 2649–2675, 2013. View at Google Scholar
  7. P. Belenky, K. L. Bogan, and C. Brenner, “NAD+ metabolism in health and disease,” Trends in Biochemical Sciences, vol. 32, no. 1, pp. 12–19, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. S.-P. Lu and S.-J. Lin, “Regulation of yeast sirtuins by NAD+ metabolism and calorie restriction,” Biochimica et Biophysica Acta, vol. 1804, no. 8, pp. 1567–1575, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Guarente, “Sirtuins, aging, and metabolism,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 76, pp. 81–90, 2011. View at Google Scholar
  10. R. H. Houtkooper, E. Pirinen, and J. Auwerx, “Sirtuins as regulators of metabolism and healthspan,” Nature Reviews Molecular Cell Biology, vol. 13, no. 4, pp. 225–238, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. H. J. Powers, “Riboflavin (vitamin B-2) and health,” American Journal of Clinical Nutrition, vol. 77, no. 6, pp. 1352–1360, 2003. View at Google Scholar · View at Scopus
  12. R. Horvath, “Update on clinical aspects and treatment of selected vitamin-responsive disorders II (riboflavin and CoQ10),” Journal of Inherited Metabolic Disease, vol. 35, no. 4, pp. 679–687, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Depeint, W. R. Bruce, N. Shangari, R. Mehta, and P. J. O'Brien, “Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism,” Chemico-Biological Interactions, vol. 163, no. 1-2, pp. 94–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Guarente, “Mitochondria—a nexus for aging, calorie restriction, and sirtuins?” Cell, vol. 132, no. 2, pp. 171–176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Pimentel, L. Batista-Nascimento, C. Rodrigues-Pousada, and R. A. Menezes, “Oxidative stress in Alzheimer's and Parkinson's diseases: insights from the yeast Saccharomyces cerevisiae,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 132146, 9 pages, 2012. View at Publisher · View at Google Scholar
  16. D. Botstein and G. R. Fink, “Yeast: an experimental organism for 21st century biology,” Genetics, vol. 189, no. 3, pp. 695–704, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Tenreiro and T. F. Outeiro, “Simple is good: yeast models of neurodegeneration,” FEMS Yeast Research, vol. 10, no. 8, pp. 970–979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Anderson, K. J. Bitterman, J. G. Wood, O. Medvedik, and D. A. Sinclair, “Nicatinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae,” Nature, vol. 423, no. 6936, pp. 181–185, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. S.-J. Lin and L. Guarente, “Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease,” Current Opinion in Cell Biology, vol. 15, no. 2, pp. 241–246, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. J. J. Sandmeier, I. Celic, J. D. Boeke, and J. S. Smith, “Telomeric and rDNA silencing in Saccharomyces cerevisiae are dependent on a nuclear NAD+ salvage pathway,” Genetics, vol. 160, no. 3, pp. 877–889, 2002. View at Google Scholar · View at Scopus
  21. M. Barile, S. Passarella, G. Danese, and E. Quagliariello, “Rat liver mitochondria can synthesize nicotinamide adenine dinucleotide from nicotinamide mononucleotide and ATP via a putative matrix nicotinamide mononucleotide adenylyltransferase,” Biochemistry and Molecular Biology International, vol. 38, no. 2, pp. 297–306, 1996. View at Google Scholar · View at Scopus
  22. A. Nikiforov, C. Dölle, M. Niere, and M. Ziegler, “Pathways and subcellular compartmentation of NAD biosynthesis in human cells: from entry of extracellular precursors to mitochondrial NAD generation,” Journal of Biological Chemistry, vol. 286, no. 24, pp. 21767–21778, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Todisco, G. Agrimi, A. Castegna, and F. Palmieri, “Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 281, no. 3, pp. 1524–1531, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. L. R. Stein and S. Imai, “The dynamic regulation of NAD metabolism in mitochondria,” Trends in Endocrinology & Metabolism, vol. 23, pp. 420–428, 2012. View at Google Scholar
  25. L. F. De Figueiredo, T. I. Gossmann, M. Ziegler, and S. Schuster, “Pathway analysis of NAD+ metabolism,” Biochemical Journal, vol. 439, no. 2, pp. 341–348, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Imai, F. B. Johnson, R. A. Marciniak, M. McVey, P. U. Park, and L. Guarante, “Sir2: an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 65, pp. 297–302, 2000. View at Google Scholar · View at Scopus
  27. A. G. McLennan, “The Nudix hydrolase superfamily,” Cellular and Molecular Life Sciences, vol. 63, no. 2, pp. 123–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. R. AbdelRaheim, J. L. Cartwright, L. Gasmi, and A. G. McLennan, “The NADH diphosphatase encoded by the Saccharomyces cerevisiae NPY1 nudix hydrolase gene is located in peroxisomes,” Archives of Biochemistry and Biophysics, vol. 388, no. 1, pp. 18–24, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Santos, A. Jimenez, and J. L. Revuelta, “Molecular characterization of FMN1, the structural gene for the monofunctional flavokinase of Saccharomyces cerevisiae,” Journal of Biological Chemistry, vol. 275, no. 37, pp. 28618–28624, 2000. View at Google Scholar · View at Scopus
  30. M. Wu, B. Repetto, D. M. Glerum, and A. Tzagoloff, “Cloning and characterization of FAD1, the structural gene for flavin adenine dinucleotide synthetase of Saccharomyces cerevisiae,” Molecular and Cellular Biology, vol. 15, no. 1, pp. 264–271, 1995. View at Google Scholar · View at Scopus
  31. V. Bafunno, T. A. Giancaspero, C. Brizio et al., “Riboflavin uptake and FAD synthesis in Saccharomyces cerevisiae mitochondria. Involvement of the flx1p carrier in fad export,” Journal of Biological Chemistry, vol. 279, no. 1, pp. 95–102, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. T. A. Giancaspero, R. Wait, E. Boles, and M. Barile, “Succinate dehydrogenase flavoprotein subunit expression in Saccharomyces cerevisiae—involvement of the mitochondrial FAD transporter, Flx1p,” FEBS Journal, vol. 275, no. 6, pp. 1103–1117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Barile, S. Passarella, A. Bertoldi, and E. Quagliariello, “Flavin adenine dinucleotide synthesis in isolated rat liver mitochondria caused by imported flavin mononucleotide,” Archives of Biochemistry and Biophysics, vol. 305, no. 2, pp. 442–447, 1993. View at Publisher · View at Google Scholar · View at Scopus
  34. T. A. Giancaspero, V. Locato, M. C. De Pinto, L. De Gara, and M. Barile, “The occurrence of riboflavin kinase and FAD synthetase ensures FAD synthesis in tobacco mitochondria and maintenance of cellular redox status,” FEBS Journal, vol. 276, no. 1, pp. 219–231, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. E. M. Torchetti, C. Brizio, M. Colella et al., “Mitochondrial localization of human FAD synthetase isoform 1,” Mitochondrion, vol. 10, no. 3, pp. 263–273, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. A. A. Sibirnyi and G. M. Shavlovskii, “Inhibition of alkaline phosphatase I of Pichia guilliermondii yeast in vitro and in vivo,” Ukrainskii Biokhimicheskii Zhurnal, vol. 50, no. 2, pp. 212–217, 1978. View at Google Scholar · View at Scopus
  37. V. I. Iatsishin, D. V. Fedorovich, and A. A. Sibirnyǐ , “The microbial synthesis of flavin nucleotides: a review,” Prikladnaia Biokhimiia i Mikrobiologiia, vol. 45, no. 2, pp. 133–142, 2009. View at Google Scholar · View at Scopus
  38. M. Barile, C. Brizio, C. De Virgilio, S. Delfine, E. Quagliariello, and S. Passarella, “Flavin adenine dinucleotide and flavin mononucleotide metabolism in rat liver. The occurrence of FAD pyrophosphatase and FMN phosphohydrolase in isolated mitochondria,” European Journal of Biochemistry, vol. 249, no. 3, pp. 777–785, 1997. View at Google Scholar · View at Scopus
  39. T. Giancaspero, V. Bafunno, C. Brizio, M. Barile, and S. Passarella, “Flavin Adenine Dinucleotide metabolism in S. cerevisiae The occurrence of a FAD pyrophosphatase in isolated mitochondria,” Italian Journal of Biochemistry, vol. 52, p. 240, 2003. View at Google Scholar
  40. M. L. Pallotta, “Evidence for the presence of a FAD pyrophosphatase and a FMN phosphohydrolase in yeast mitochondria: a possible role in flavin homeostasis,” Yeast, vol. 28, no. 10, pp. 693–705, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Ogawa, K. Yoshimura, H. Miyake et al., “Molecular characterization of organelle-type nudix hydrolases in Arabidopsis,” Plant Physiology, vol. 148, no. 3, pp. 1412–1424, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. F. J. Sandoval, Y. Zhang, and S. Roje, “Flavin nucleotide metabolism in plants: monofunctional enzymes synthesize FAD in plastids,” Journal of Biological Chemistry, vol. 283, no. 45, pp. 30890–30900, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Meisinger, T. Sommer, and N. Pfanner, “Purification of Saccharomcyes cerevisiae mitochondria devoid of microsomal and cytosolic contaminations,” Analytical Biochemistry, vol. 287, no. 2, pp. 339–342, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Neuburger, E.-P. Journet, R. Bligny, J.-P. Carde, and R. Douce, “Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll,” Archives of Biochemistry and Biophysics, vol. 217, no. 1, pp. 312–323, 1982. View at Google Scholar · View at Scopus
  45. G. Tedeschi, L. Pollegioni, and A. Negri, “Assays of d-amino acid oxidases,” Methods in Molecular Biology, vol. 794, pp. 381–395, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  47. E. M. Torchetti, F. Bonomi, M. Galluccio et al., “Human FAD synthase (isoform 2): a component of the machinery that delivers FAD to apo-flavoproteins,” FEBS Journal, vol. 278, no. 22, pp. 4435–4449, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. W. S. Kunz, “Evaluation of electron-transfer flavoprotein and α-lipoamide dehydrogenase redox states by two-channel fluorimetry and its application to the investigation of β-oxidation,” Biochimica et Biophysica Acta, vol. 932, no. 1, pp. 8–16, 1988. View at Google Scholar · View at Scopus
  49. T. E. King, R. L. Howard, D. F. Wilson, and J. C. Li, “The partition of flavins in the heart muscle preparation and heart mitochondria,” The Journal of Biological Chemistry, vol. 237, pp. 2941–2946, 1962. View at Google Scholar · View at Scopus
  50. J. R. Barrio, J. A. Secrist III, and N. J. Leonard, “A fluorescent analog of nicotinamide adenine dinucleotide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 69, no. 8, pp. 2039–2042, 1972. View at Google Scholar · View at Scopus
  51. F. Di Lisa, R. Menabò, M. Canton, M. Barile, and P. Bernardi, “Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart,” Journal of Biological Chemistry, vol. 276, no. 4, pp. 2571–2575, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Rosenfeld and B. Beauvoit, “Role of the non-respiratory pathways in the utilization of molecular oxygen by Saccharomyces cerevisiae,” Yeast, vol. 20, no. 13, pp. 1115–1144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Tzagoloff, J. Jang, D. M. Glerum, and M. Wu, “FLX1 codes for a carrier protein involved in maintaining a proper balance of flavin nucleotides in yeast mitochondria,” Journal of Biological Chemistry, vol. 271, no. 13, pp. 7392–7397, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. M. H. Ragab, R. Brightwell, and A. L. Tappel, “Hydrolysis of flavin-adenine dinucleotide by rat liver lysosomes,” Archives of Biochemistry and Biophysics, vol. 123, no. 1, pp. 179–185, 1968. View at Google Scholar · View at Scopus
  55. H. J. Shin and J. L. Mego, “A rat liver lysosomal membrane flavin-adenine dinucleotide phosphohydrolase: purification and characterization,” Archives of Biochemistry and Biophysics, vol. 267, no. 1, pp. 95–103, 1988. View at Google Scholar · View at Scopus
  56. R. Orij, M. L. Urbanus, F. J. Vizeacoumar et al., “Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH(c) in Saccharomyces cerevisiae,” Genome Biology, vol. 13, p. R80, 2012. View at Google Scholar
  57. A. Ayer, J. Sanwald, B. A. Pillay, A. J. Meyer, G. G. Perrone, and I. W. Dawes, “Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae,” PLoS ONE, vol. 8, Article ID e65240, 2013. View at Google Scholar
  58. D. Dikov, A. Aulbach, B. Muster, S. Dröse, M. Jendrach, and J. Bereiter-Hahn, “Do UCP2 and mild uncoupling improve longevity?” Experimental Gerontology, vol. 45, no. 7-8, pp. 586–595, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. A. L. Hughes and D. E. Gottschling, “An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast,” Nature, vol. 492, pp. 261–265, 2012. View at Google Scholar
  60. R. Dechant, M. Binda, S. S. Lee, S. Pelet, J. Winderickx, and M. Peter, “Cytosolic pH is a second messenger for glucose and regulates the PKA pathway through V-ATPase,” EMBO Journal, vol. 29, no. 15, pp. 2515–2526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Yang, T. Yang, J. A. Baur et al., “Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival,” Cell, vol. 130, no. 6, pp. 1095–1107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Maruta, T. Yoshimoto, D. Ito et al., “An Arabidopsis FAD pyrophosphohydrolase, AtNUDX23, is involved in the flavin homeostasis,” Plant and Cell Physiology, 2012. View at Publisher · View at Google Scholar
  63. H.-X. Hao, O. Khalimonchuk, M. Schraders et al., “SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma,” Science, vol. 325, no. 5944, pp. 1139–1142, 2009. View at Publisher · View at Google Scholar · View at Scopus