Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 636287, 13 pages
http://dx.doi.org/10.1155/2013/636287
Research Article

Maintenance of Mitochondrial Morphology by Autophagy and Its Role in High Glucose Effects on Chronological Lifespan of Saccharomyces cerevisiae

1School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
2Department of Genetics, University of Salzburg, Hellbrunnerstrare 34, 5020 Salzburg, Austria

Received 13 May 2013; Accepted 21 June 2013

Academic Editor: Joris Winderickx

Copyright © 2013 May T. Aung-Htut et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In Saccharomyces cerevisiae, mitochondrial morphology changes when cells are shifted between nonfermentative and fermentative carbon sources. Here, we show that cells of S. cerevisiae grown in different glucose concentrations display different mitochondrial morphologies. The morphology of mitochondria in the cells growing in 0.5% glucose was similar to that of mitochondria in respiring cells. However, the mitochondria of cells growing in higher glucose concentrations (2% and 4%) became fragmented after growth in these media, due to the production of acetic acid; however, the fragmentation was not due to intracellular acidification. From a screen of mutants involved in sensing and utilizing nutrients, cells lacking TOR1 had reduced mitochondrial fragmentation, and autophagy was found to be essential for this reduction. Mitochondrial fragmentation in cells grown in high glucose was reversible by transferring them into conditioned medium from a culture grown on 0.5% glucose. Similarly, the chronological lifespan of cells grown in high glucose medium was reduced, and this phenotype could be reversed when cells were transferred to low glucose conditioned medium. These data indicate that chronological lifespan seems correlated with mitochondrial morphology of yeast cells and that both phenotypes can be influenced by factors from conditioned medium of cultures grown in low glucose medium.