Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 639541, 12 pages
http://dx.doi.org/10.1155/2013/639541
Review Article

Therapeutic Roles of Heme Oxygenase-1 in Metabolic Diseases: Curcumin and Resveratrol Analogues as Possible Inducers of Heme Oxygenase-1

1Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine, 460 Iksandae-ro, Iksan 570-749, Republic of Korea
2Department of Biological Science, University of Ulsan, 30 Daehack-ro, Ulsan 680-749, Republic of Korea
3Department of Microbiology and Immunology, Wonkwang University School of Medicine, 460 Iksandae-ro, Iksan 570-749, Republic of Korea

Received 5 June 2013; Revised 4 August 2013; Accepted 12 August 2013

Academic Editor: Joseph Fomusi Ndisang

Copyright © 2013 Yong Son et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. K. Roberts, A. L. Hevener, and R. J. Barnard, “Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training,” Comprehensive Physiology, vol. 3, no. 1, pp. 1–58, 2013. View at Google Scholar
  2. C. V. Iannucci, D. Capoccia, M. Calabria, and F. Leonetti, “Metabolic syndrome and adipose tissue: new clinical aspects and therapeutic targets,” Current Pharmaceutical Design, vol. 13, no. 21, pp. 2148–2168, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Santoro and R. Weiss, “Metabolic syndrome in youth: current insights and novel serum biomarkers,” Biomarkers in Medicine, vol. 6, no. 6, pp. 719–727, 2012. View at Publisher · View at Google Scholar
  4. M. González-Castejón and A. Rodriguez-Casado, “Dietary phytochemicals and their potential effects on obesity: a review,” Pharmacological Research, vol. 64, no. 5, pp. 438–455, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. E. P. Cherniack, “Polyphenols: planting the seeds of treatment for the metabolic syndrome,” Nutrition, vol. 27, no. 6, pp. 617–623, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Piperi, C. Adamopoulos, G. Dalagiorgou, E. Diamanti-Kandarakis, and A. G. Papavassiliou, “Crosstalk between advanced glycation and endoplasmic reticulum stress: emerging therapeutic targeting for metabolic diseases,” The Journal of Clinical Endocrinology and Metabolism, vol. 97, no. 7, pp. 2231–2242, 2012. View at Publisher · View at Google Scholar
  7. H. O. Pae, Y. Son, N. H. Kim, H. J. Jeong, K. C. Chang, and H. Chung, “Role of heme oxygenase in preserving vascular bioactive NO,” Nitric Oxide, vol. 23, no. 4, pp. 251–257, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Kapitulnik, “Bilirubin: an endogenous product of heme degradation with both cytotoxic and cytoprotective properties,” Molecular Pharmacology, vol. 66, no. 4, pp. 773–779, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. H. O. Pae, E. C. Kim, and H. T. Chung, “Integrative survival response evoked by heme oxygenase-1 and heme metabolites,” Journal of Clinical Biochemistry and Nutrition, vol. 42, no. 3, pp. 197–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. N. G. Abraham, “Heme oxygenase: a target gene for anti-diabetic and obesity,” Current Pharmaceutical Design, vol. 14, no. 5, pp. 412–421, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. B. M. Hybertson, B. Gao, S. K. Bose, and J. M. McCord, “Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation,” Molecular Aspects of Medicine, vol. 32, no. 4–6, pp. 234–246, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. G. D. Stoner, L. Wang, and B. C. Casto, “Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries,” Carcinogenesis, vol. 29, no. 9, pp. 1665–1674, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Reth, “Hydrogen peroxide as second messenger in lymphocyte activation,” Nature Immunology, vol. 3, no. 12, pp. 1129–1134, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” International Journal of Biochemistry and Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. U. Karunakaran and K. G. Park, “A systematic review of oxidative stress and safety of antioxidants in diabetes: focus on islets and their defense,” Diabetes and Metabolism Journal, vol. 37, no. 2, pp. 106–112, 2013. View at Publisher · View at Google Scholar
  16. A. Bloch-Damti, R. Potashnik, P. Gual et al., “Differential effects of IRS1 phosphorylated on Ser307 or Ser632 in the induction of insulin resistance by oxidative stress,” Diabetologia, vol. 49, no. 10, pp. 2463–2473, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Finkel, “Signal transduction by reactive oxygen species,” Journal of Cell Biology, vol. 194, no. 1, pp. 7–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. G. R. Romeo, J. Lee, and S. E. Shoelson, “Metabolic syndrome, insulin resistance, and roles of inflammation-mechanisms and therapeutic targets,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 32, no. 8, pp. 1771–1776, 2012. View at Publisher · View at Google Scholar
  19. G. S. Hotamisligil, P. Arner, J. F. Caro, R. L. Atkinson, and B. M. Spiegelman, “Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance,” Journal of Clinical Investigation, vol. 95, no. 5, pp. 2409–2415, 1995. View at Google Scholar · View at Scopus
  20. H. B. Stoner, R. A. Little, and K. N. Frayn, “The effect of sepsis on the oxidation of carbohydrate and fat,” British Journal of Surgery, vol. 70, no. 1, pp. 32–35, 1983. View at Google Scholar · View at Scopus
  21. H. J. Jang, H. S. Kim, D. H. Hwang, M. J. Quon, and J. A. Kim, “Toll-like receptor 2 mediates high-fat diet-induced impairment of vasodilator actions of insulin,” American Journal of Physiology, vol. 304, no. 10, pp. E1077–E1088, 2013. View at Google Scholar
  22. H. Tilg and A. R. Moschen, “Inflammatory mechanisms in the regulation of insulin resistance,” Molecular Medicine, vol. 14, no. 3-4, pp. 222–231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Liu and W. Cao, “P38 mitogen-activated protein kinase: a critical node linking insulin resistance and cardiovascular diseases in type 2 diabetes mellitus,” Endocrine, Metabolic and Immune Disorders, vol. 9, no. 1, pp. 38–46, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Fernández-Veledo, I. Nieto-Vazquez, R. Vila-Bedmar, L. Garcia-Guerra, M. Alonso-Chamorro, and M. Lorenzo, “Molecular mechanisms involved in obesity-associated insulin resistance: therapeutical approach,” Archives of Physiology and Biochemistry, vol. 115, no. 4, pp. 227–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Jager, T. Grémeaux, M. Cormont, Y. Le Marchand-Brustel, and J. Tanti, “Interleukin-1β-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression,” Endocrinology, vol. 148, no. 1, pp. 241–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. B. Fessler, L. L. Rudel, and J. M. Brown, “Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome,” Current Opinion in Lipidology, vol. 20, no. 5, pp. 379–385, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. C. Leemans, S. L. Cassel, and F. S. Sutterwala, “Sensing damage by the NLRP3 inflammasome,” Immunological Reviews, vol. 243, no. 1, pp. 152–162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. T. M. de Lima-Salgado, T. C. Alba-Loureiro, C. S. do Nascimento, M. T. Nunes, and R. Curi, “Molecular mechanisms by which saturated fatty acids modulate TNF-α expression in mouse macrophage lineage,” Cell Biochemistry and Biophysics, vol. 59, no. 2, pp. 89–97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Kim, K. A. Tysseling, J. Rice et al., “Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKβ,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 5, pp. 989–994, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Kim, M. Pham, I. Luttrell et al., “Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity,” Circulation Research, vol. 100, no. 11, pp. 1589–1596, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Maloney, I. R. Sweet, D. M. Hockenbery et al., “Activation of NF-κB by palmitate in endothelial cells: a key role for NADPH oxidase-derived superoxide in response to TLR4 activation,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 9, pp. 1370–1375, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. H. P. Kim, H. Pae, S. H. Back et al., “Heme oxygenase-1 comes back to endoplasmic reticulum,” Biochemical and Biophysical Research Communications, vol. 404, no. 1, pp. 1–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. K. M. Kim, H. Pae, M. Zheng, R. Park, Y. Kim, and H. Chung, “Carbon monoxide induces heme oxygenase-1 via activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress,” Circulation Research, vol. 101, no. 9, pp. 919–927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Flamment, E. Hajduch, P. Ferré, and F. Foufelle, “New insights into ER stress-induced insulin resistance,” Trends in Endocrinology and Metabolism, vol. 23, no. 8, pp. 381–390, 2012. View at Publisher · View at Google Scholar
  35. U. Özcan, Q. Cao, E. Yilmaz et al., “Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes,” Science, vol. 306, no. 5695, pp. 457–461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. C. R. Bruce, A. L. Carey, J. A. Hawley, and M. A. Febbraio, “Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism,” Diabetes, vol. 52, no. 9, pp. 2338–2345, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. J. F. Ndisang and A. Jadhav, “Heme oxygenase system enhances insulin sensitivity and glucose metabolism in streptozotocin-induced diabetes,” American Journal of Physiology, vol. 296, no. 4, pp. E829–E841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. F. Ndisang and A. Jadhav, “Up-regulating the hemeoxygenase system enhances insulin sensitivity and improves glucose metabolism in insulin-resistant diabetes in Goto-Kakizaki rats,” Endocrinology, vol. 150, no. 6, pp. 2627–2636, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J. F. Ndisang, N. Lane, and A. Jadhav, “The heme oxygenase system abates hyperglycemia in zucker diabetic fatty rats by potentiating insulin-sensitizing pathways,” Endocrinology, vol. 150, no. 5, pp. 2098–2108, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J. F. Ndisang, N. Lane, and A. Jadhav, “Upregulation of the heme oxygenase system ameliorates postprandial and fasting hyperglycemia in type 2 diabetes,” American Journal of Physiology, vol. 296, no. 5, pp. E1029–E1041, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. F. Ndisang, N. Lane, N. Syed, and A. Jadhav, “Up-regulating the heme oxygenase system with hemin improves insulin sensitivity and glucose metabolism in adult spontaneously hypertensive rats,” Endocrinology, vol. 151, no. 2, pp. 549–560, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. F. Ndisang, A. Jadhav, and J. Fomusi Ndisang, “The heme oxygenase system attenuates pancreatic lesions and improves insulin sensitivity and glucose metabolism in deoxycorticosterone acetate hypertension,” American Journal of Physiology, vol. 298, no. 1, pp. R211–R223, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. K. D. Poss and S. Tonegawa, “Heme oxygenase 1 is required for mammalian iron reutilization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 20, pp. 10919–10924, 1997. View at Publisher · View at Google Scholar · View at Scopus
  44. L. D. Orozco, M. H. Kapturczak, B. Barajas et al., “Heme oxygenase-1 expression in macrophages plays a beneficial role in atherosclerosis,” Circulation Research, vol. 100, no. 12, pp. 1703–1711, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Yachie, Y. Niida, T. Wada et al., “Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency,” Journal of Clinical Investigation, vol. 103, no. 1, pp. 129–135, 1999. View at Google Scholar · View at Scopus
  46. Y. Son, S. J. Byun, and H. O. Pae, “Involvement of heme oxygenase-1 expression in neuroprotection by piceatannol, a natural analog and a metabolite of resveratrol, against glutamate-mediated oxidative injury in HT22 neuronal cells,” Amino Acids, vol. 45, no. 2, pp. 393–401, 2013. View at Publisher · View at Google Scholar
  47. J. Hur, S. Kim, P. Lee, Y. M. Lee, and S. Y. Choi, “The protective effects of oxyresveratrol imine derivative against hydrogen peroxide-induced cell death in PC12 cells,” Free Radical Research, vol. 47, no. 3, pp. 212–218, 2013. View at Publisher · View at Google Scholar
  48. J. E. Clark, R. Foresti, C. J. Green, and R. Motterlini, “Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress,” Biochemical Journal, vol. 348, no. 3, pp. 615–619, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Balla, H. S. Jacob, J. Balla et al., “Ferritin: a cytoprotective antioxidant strategem of endothelium,” Journal of Biological Chemistry, vol. 267, no. 25, pp. 18148–18153, 1992. View at Google Scholar · View at Scopus
  50. I. Rahman, S. K. Biswas, and P. A. Kirkham, “Regulation of inflammation and redox signaling by dietary polyphenols,” Biochemical Pharmacology, vol. 72, no. 11, pp. 1439–1452, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Otterbein, F. Bach, J. Alam et al., “Carbon monoxide has anti-inflammatory effects involving the mitogen- activated protein kinase pathway,” Nature Medicine, vol. 6, no. 4, pp. 422–428, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Lee and L. Chau, “Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice,” Nature Medicine, vol. 8, no. 3, pp. 240–246, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Zhang, “Integration of ER stress, oxidative stress and the inflammatory response in health and disease,” International Journal of Clinical and Experimental Medicine, vol. 3, no. 1, pp. 33–40, 2010. View at Google Scholar · View at Scopus
  54. X. M. Liu, K. J. Peyton, D. Ensenat et al., “Endoplasmic reticulum stress stimulates heme oxygenase-1 gene expression in vascular smooth muscle: role in cell survival,” Journal of Biological Chemistry, vol. 280, no. 2, pp. 872–877, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Chung, D. Shin, M. Zheng et al., “Carbon monoxide, a reaction product of heme oxygenase-1, suppresses the expression of C-reactive protein by endoplasmic reticulum stress through modulation of the unfolded protein response,” Molecular Immunology, vol. 48, no. 15-16, pp. 1793–1799, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Li, D. H. Kim, P. L. Tsenovoy et al., “Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance,” Diabetes, vol. 57, no. 6, pp. 1526–1535, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Nicolai, M. Li, D. H. Kim et al., “Heme oxygenase-1 induction remodels adipose tissue and improves insulin sensitivity in obesity-induced diabetic rats,” Hypertension, vol. 53, no. 3, pp. 508–515, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Cao, S. J. Peterson, K. Sodhi et al., “Heme oxygenase gene targeting to adipocytes attenuates adiposity and vascular dysfunction in mice fed a high-fat diet,” Hypertension, vol. 60, no. 2, pp. 467–475, 2012. View at Google Scholar
  59. R. A. Galbraith and A. Kappas, “Regulation of food intake and body weight in rats by the synthetic heme analogue cobalt protoporphyrin,” American Journal of Physiology, vol. 261, no. 6, pp. R1388–R1394, 1991. View at Google Scholar · View at Scopus
  60. E. Csongradi, J. M. Docarmo, J. H. Dubinion, T. Vera, and D. E. Stec, “Chronic HO-1 induction with cobalt protoporphyrin (CoPP) treatment increases oxygen consumption, activity, heat production and lowers body weight in obese melanocortin-4 receptor-deficient mice,” International Journal of Obesity, vol. 36, no. 2, pp. 244–253, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. H. K. Dong, A. P. Burgess, M. Li et al., “Heme oxygenase-mediated increases in adiponectin decrease fat content and inflammatory cytokines tumor necrosis factor-α and interleukin-6 in Zucker rats and reduce adipogenesis in human mesenchymal stem cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 325, no. 3, pp. 833–840, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. S. Turkseven, A. Kruger, C. J. Mingone et al., “Antioxidant mechanism of heme oxygenase-1 involves an increase in superoxide dismutase and catalase in experimental diabetes,” American Journal of Physiology, vol. 289, no. 2, pp. H701–H707, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Li, S. Peterson, D. Husney et al., “Interdiction of the diabetic state in NOD mice by sustained induction of heme oxygenase: possible role of carbon monoxide and bilirubin,” Antioxidants and Redox Signaling, vol. 9, no. 7, pp. 855–863, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. S. Ohtomo, M. Nangaku, Y. Izuhara, S. Takizawa, C. V. Y. D. Strihou, and T. Miyata, “Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model,” Nephrology Dialysis Transplantation, vol. 23, no. 4, pp. 1166–1172, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. P. Basnet and N. Skalko-Basnet, “Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment,” Molecules, vol. 16, no. 6, pp. 4567–4598, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. E. Balogun, M. Hoque, P. Gong et al., “Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element,” Biochemical Journal, vol. 371, no. 3, pp. 887–895, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. H. O. Pae, G. S. Jeong, S. O. Jeong et al., “Roles of heme oxygenase-1 in curcumin-induced growth inhibition in rat smooth muscle cells,” Experimental and Molecular Medicine, vol. 39, no. 3, pp. 267–277, 2007. View at Google Scholar · View at Scopus
  68. S. O. Jeong, G. S. Oh, H. Y. Ha et al., “Dimethoxycurcumin, a synthetic curcumin analogue, induces heme oxygenase-1 expression through Nrf2 activation in RAW264.7 macrophages,” Journal of Clinical Biochemistry and Nutrition, vol. 44, no. 1, pp. 79–84, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. G. S. Jeong, G. S. Oh, H. O. Pae et al., “Comparative effects of curcuminoids on endothelial heme oxygenase-1 expression: ortho-methoxy groups are essential to enhance heme oxygenase activity and protection,” Experimental and Molecular Medicine, vol. 38, no. 4, pp. 393–400, 2006. View at Google Scholar · View at Scopus
  70. L. Zhongfa, M. Chiu, J. Wang et al., “Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice,” Cancer Chemotherapy and Pharmacology, vol. 69, no. 3, pp. 679–689, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. C. Tamvakopoulos, K. Dimas, Z. D. Sofianos et al., “Metabolism and anticancer activity of the curcumin analogue, dimethoxycurcumin,” Clinical Cancer Research, vol. 13, no. 4, pp. 1269–1277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. M. T. Aziz, I. N. El Ibrashy, D. P. Mikhailidis et al., “Signaling mechanisms of a water soluble curcumin derivative in experimental type 1 diabetes with cardiomyopathy,” Diabetology & Metabolic Syndrome, vol. 5, no. 1, p. 13, 2013. View at Google Scholar
  73. C. Y. Chen, J. H. Jang, M. H. Li, and Y. Surh, “Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells,” Biochemical and Biophysical Research Communications, vol. 331, no. 4, pp. 993–1000, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Szkudelska, L. Nogowski, and T. Szkudelski, “Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes,” Journal of Steroid Biochemistry and Molecular Biology, vol. 113, no. 1-2, pp. 17–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. L. Rivera, R. Morón, A. Zarzuelo, and M. Galisteo, “Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats,” Biochemical Pharmacology, vol. 77, no. 6, pp. 1053–1063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. K. K. Rocha, G. A. Souza, G. X. Ebaid, F. R. F. Seiva, A. C. Cataneo, and E. L. B. Novelli, “Resveratrol toxicity: effects on risk factors for atherosclerosis and hepatic oxidative stress in standard and high-fat diets,” Food and Chemical Toxicology, vol. 47, no. 6, pp. 1362–1367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Palsamy and S. Subramanian, “Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic β-cell dysfunction in streptozotocin-nicotinamide-induced diabetic rats,” Journal of Cellular Physiology, vol. 224, no. 2, pp. 423–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. L. F. Rodella, L. Vanella, S. J. Peterson et al., “Heme oxygenase-derived carbon monoxide restores vascular function in type 1 diabetes,” Drug Metabolism Letters, vol. 2, no. 4, pp. 290–300, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. S. V. Penumathsa, S. Koneru, S. M. Samuel et al., “Strategic targets to induce neovascularization by resveratrol in hypercholesterolemic rat myocardium: role of caveolin-1, endothelial nitric oxide synthase, hemeoxygenase-1, and vascular endothelial growth factor,” Free Radical Biology and Medicine, vol. 45, no. 7, pp. 1027–1034, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. M. Thirunavukkarasu, S. V. Penumathsa, S. Koneru et al., “Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of nitric oxide, thioredoxin, and heme oxygenase,” Free Radical Biology and Medicine, vol. 43, no. 5, pp. 720–729, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Piotrowska, M. Kucinska, and M. Murias, “Biological activity of piceatannol: leaving the shadow of resveratrol,” Mutation Research, vol. 750, no. 1, pp. 60–82, 2012. View at Publisher · View at Google Scholar · View at Scopus
  82. B. S. Wung, M. C. Hsu, C. C. Wu, and C. Hsieh, “Piceatannol upregulates endothelial heme oxygenase-1 expression via novel protein kinase C and tyrosine kinase pathways,” Pharmacological Research, vol. 53, no. 2, pp. 113–122, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. D. W. Kim, Y. M. Kim, S. D. Kang, Y. M. Han, and H. O. Pae, “Effects of resveratrol and trans-3, 5, 4'-trimethoxystilbene on glutamate-induced cytotoxicity, heme oxygenase-1, and sirtuin 1 in HT22 neuronal cells,” Biomolecules & Therapeutics, vol. 20, no. 3, pp. 306–312, 2012. View at Google Scholar
  84. Y. T. Yang, C. J. Weng, C. T. Ho, and G. C. Yen, “Resveratrol analog-3,5,4′-trimethoxy-trans-stilbene inhibits invasion of human lung adenocarcinoma cells by suppressing the MAPK pathway and decreasing matrix metalloproteinase-2 expression,” Molecular Nutrition and Food Research, vol. 53, no. 3, pp. 407–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. B. B. Muhoberac, T. Hanew, S. Halter, and S. Schenker, “A model of cytochrome P-450-centered hepatic dysfunction in drug metabolism induced by cobalt-protoporphyrin administration,” Biochemical Pharmacology, vol. 38, no. 22, pp. 4103–4113, 1989. View at Publisher · View at Google Scholar · View at Scopus
  86. D. W. Rosenberg and A. Kappas, “The comparative abilities of inorganic cobalt and c cobalt-protoporphyrin to affect copper metabolism and elevate plasma ceruloplasmin,” Pharmacology, vol. 50, no. 3, pp. 201–208, 1995. View at Google Scholar · View at Scopus
  87. T. J. Smith, G. S. Drummond, and A. Kappas, “Cobalt-protoporphyrin suppresses thyroid and testicular hormone concentrations in rat serum: a novel action of this synthetic heme analogue,” Pharmacology, vol. 34, no. 1, pp. 9–16, 1987. View at Google Scholar · View at Scopus
  88. P. Yao, A. Nussler, L. Liu et al., “Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways,” Journal of Hepatology, vol. 47, no. 2, pp. 253–261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Rivera, R. Morón, M. Sánchez, A. Zarzuelo, and M. Galisteo, “Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats,” Obesity, vol. 16, no. 9, pp. 2081–2087, 2008. View at Publisher · View at Google Scholar · View at Scopus