Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 657387, 9 pages
http://dx.doi.org/10.1155/2013/657387
Clinical Study

Oxidant Status and Lipid Composition of Erythrocyte Membranes in Patients with Type 2 Diabetes, Chronic Liver Damage, and a Combination of Both Pathologies

1Departamento de Biología Celular, Instituto de Fisiología Celular, UNAM, 04510 México DF, Mexico
2Instituto Nacional de Medicina Genómica (INMEGEN), 14610 México DF, Mexico
3Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus UNAM, 76230 Juriquilla QRO, Mexico

Received 1 March 2013; Accepted 22 May 2013

Academic Editor: Kota V. Ramana

Copyright © 2013 Rolando Hernández-Muñoz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Zimmet, K. Alberti, and J. Shaw, “Global and societal implications of the diabetes epidemic,” Nature, vol. 414, no. 6865, pp. 782–787, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. J. W. Baynes, “Role of oxidative stress in development of complications in diabetes,” Diabetes, vol. 40, no. 4, pp. 405–412, 1991. View at Google Scholar · View at Scopus
  3. R. D. Hoeldtke, K. D. Bryner, D. R. McNeill, S. S. Warehime, K. van Dyke, and G. Hobbs, “Oxidative stress and insulin requirements in patients with recent-onset type I diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 4, pp. 1624–1628, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Taysi, F. Polat, M. Gul, R. Sari, and E. Bakan, “Lipid peroxidation, some extracellular antioxidants, and antioxidant enzymes in serum of patients with rheumatoid arthritis,” Rheumatology International, vol. 21, no. 5, pp. 200–204, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Wu and C. J. Meininger, “Arginine nutrition and cardiovascular function,” Journal of Nutrition, vol. 130, no. 11, pp. 2626–2629, 2000. View at Google Scholar · View at Scopus
  6. J. V. Hunt, C. C. T. Smith, and S. P. Wolff, “Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose,” Diabetes, vol. 39, no. 11, pp. 1420–1424, 1990. View at Google Scholar · View at Scopus
  7. J. F. Fitzgibbons, R. D. Koler, and R. T. Jones, “Red cell age related changes of hemoglobins AIa+b and AIc in normal and diabetic subjects,” Journal of Clinical Investigation, vol. 58, no. 4, pp. 820–824, 1976. View at Google Scholar · View at Scopus
  8. P. M. Abuja and R. Albertini, “Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins,” Clinica Chimica Acta, vol. 306, no. 1-2, pp. 1–17, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Paroni, F. Ceriotti, R. Galanello et al., “Performance characteristics and clinical utility of an enzymatic method for the measurement of glycated albumin in plasma,” Clinical Biochemistry, vol. 40, no. 18, pp. 1398–1405, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Faure, P. Corticelli, M. J. Richard et al., “Lipid peroxidation and trace element status in diabetic ketotic patients: influence of insulin therapy,” Clinical Chemistry, vol. 39, no. 5, pp. 789–793, 1993. View at Google Scholar · View at Scopus
  11. E. Velazquez, P. H. Winocour, P. Kesteven, K. G. M. M. Alberti, and M. F. Laker, “Relation of lipid peroxides to macrovascular disease in type 2 diabetes,” Diabetic Medicine, vol. 8, no. 8, pp. 752–758, 1991. View at Google Scholar · View at Scopus
  12. A. A. Meltzer and J. E. Everhart, “Association between diabetes and elevated serum alanine aminotransferase activity among Mexican Americans,” American Journal of Epidemiology, vol. 146, no. 7, pp. 565–571, 1997. View at Google Scholar · View at Scopus
  13. J. E. Everhart, “Digestive diseases and diabetes,” in Diabetes in America, pp. 631–659, National Institutes of Health. National Institute of Diabetes and Digestive and Kidney Diseases, GPO, Washington, DC, USA, 2nd edition, 1995. View at Google Scholar
  14. Y. Miyake, H. Eguchi, K. Shinchi, T. Oda, S. Sasazuki, and S. Kono, “Glucose intolerance and serum aminotransferase activities in Japanese men,” Journal of Hepatology, vol. 38, no. 1, pp. 18–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. I. J. Perry, S. G. Wannamethee, and A. G. Shaper, “Prospective study of serum γ-glutamyltransferase and risk of NIDDM,” Diabetes Care, vol. 21, no. 5, pp. 732–737, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. S. R. Fagiuoli and D. H. van Thiel, “The liver in endocrine disorders,” in The Liver in Systemic Disease, V. K. Rustgi and D. H. van Thiel, Eds., pp. 285–301, Raven Press, New York, NY, USA, 1993. View at Google Scholar
  17. G. Targher and C. D. Byrne, “Diagnosis and management of nonalcoholic fatty liver disease and its hemostatic/thrombotic and vascular complications,” Seminars in Thrombosis and Hemostasis, vol. 39, no. 2, pp. 214–228, 2013. View at Publisher · View at Google Scholar
  18. S. Costantini, F. Capone, E. Guerriero et al., “Cytokinome profile of patients with type 2 diabetes and/or chronic hepatitis C infection,” PLoS One, vol. 7, no. 6, Article ID e39486, 2012. View at Publisher · View at Google Scholar
  19. L. Cimino, G. Oriani, A. D'Arienzo et al., “Interactions between metabolic disorders [diabetes, gallstones, and dyslipidaemia] and the progression of chronic hepatitis C virus infection to cirrhosis and hepatocellular carcinoma. A cross-sectional multicentre survey,” Digestive and Liver Disease, vol. 33, no. 3, pp. 240–246, 2001. View at Google Scholar · View at Scopus
  20. W. Youssef and A. J. McCullough, “Diabetes mellitus, obesity, and hepatic steatosis,” Seminars in Gastrointestinal Disease, vol. 13, no. 1, pp. 17–30, 2002. View at Google Scholar · View at Scopus
  21. R. Hernández-Muñoz, W. Glender, M. Díaz-Muñoz, J. A. García-Sáinz, and V. Chagoya de Sánchez, “Effects of adenosine on liver cell damage induced by carbon tetrachloride,” Biochemical Pharmacology, vol. 33, no. 16, pp. 2599–2604, 1984. View at Google Scholar
  22. M. K. Gaitonde, “A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids,” Biochemical Journal, vol. 104, no. 2, pp. 627–633, 1967. View at Google Scholar · View at Scopus
  23. L. C. Green, D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum, “Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids,” Analytical Biochemistry, vol. 126, no. 1, pp. 131–138, 1982. View at Google Scholar · View at Scopus
  24. I. Aguilar-Delfín, F. López-Barrera, and R. Hernández-Muñoz, “Selective enhancement of lipid peroxidation in plasma membrane in two experimental models of liver regeneration: partial hepatectomy and acute CCl4 administration,” Hepatology, vol. 24, no. 3, pp. 657–662, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. R. L. Levine, D. Garland, C. N. Oliver et al., “Determination of carbonyl content in oxidatively modified proteins,” Methods in Enzymology, vol. 186, pp. 464–478, 1990. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Hernández-Muñoz, E. Baraona, I. Blacksberg, and C. S. Lieber, “Characterization of the increased binding of acetaldehyde to red blood cells in alcoholics,” Alcoholism: Clinical and Experimental Research, vol. 13, no. 5, pp. 654–659, 1989. View at Google Scholar · View at Scopus
  27. D. J. Chiang, M. T. Pritchard, and L. E. Nagy, “Obesity, diabetes mellitus, and liver fibrosis,” American Journal of Physiology, vol. 300, no. 5, pp. G697–G702, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Malaguarnera, M. di Rosa, F. Nicoletti, and L. Malaguarnera, “Molecular mechanisms involved in NAFLD progression,” Journal of Molecular Medicine, vol. 87, no. 7, pp. 679–695, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Jou, S. S. Choi, and A. M. Diehl, “Mechanisms of disease progression in nonalcoholic fatty liver disease,” Seminars in Liver Disease, vol. 28, no. 4, pp. 370–379, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Birben, U. M. Sahiner, C. Sackesen, S. Erzurum, and O. Kalayci, “Oxidative stress and antioxidant defense,” World Allergy Organization Journal, vol. 5, no. 1, pp. 9–19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. G. L. Booth, M. K. Kapral, K. Fung, and J. V. Tu, “Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study,” The Lancet, vol. 368, no. 9529, pp. 29–36, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. G. M. Siu and H. H. Draper, “Metabolism of malonaldehyde in vivo and in vitro,” Lipids, vol. 17, no. 5, pp. 349–355, 1982. View at Google Scholar · View at Scopus
  33. A. W. Girotti, “Mechanisms of lipid peroxidation,” Journal of Free Radicals in Biology and Medicine, vol. 1, no. 2, pp. 87–95, 1985. View at Google Scholar · View at Scopus
  34. F. J. Kelly and I. S. Mudway, “Protein oxidation at the air-lung interface,” Amino Acids, vol. 25, no. 3-4, pp. 375–396, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Lyons, A. Rauh-Pfeiffer, Y. M. Yu et al., “Blood glutathione synthesis rates in healthy adults receiving a sulfur amino acid-free diet,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5071–5076, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. S. C. Lu, “Regulation of glutathione synthesis,” Current Topics in Cellular Regulation, vol. 36, pp. 95–116, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. D. M. Townsend, K. D. Tew, and H. Tapiero, “The importance of glutathione in human disease,” Biomedicine and Pharmacotherapy, vol. 57, no. 3, pp. 145–155, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Loguercio, C. del Vecchio Blanco, M. Coltorti, and G. Nardi, “Alteration of erythrocyte glutathione, cysteine and glutathione synthetase in alcoholic and non-alcoholic cirrhosis,” Scandinavian Journal of Clinical and Laboratory Investigation, vol. 52, no. 3, pp. 207–213, 1992. View at Google Scholar · View at Scopus
  39. S. Srinivasan, M. E. Hatley, D. T. Bolick et al., “Hyperglycaemia-induced superoxide production decreases eNOS expression via AP-1 activation in aortic endothelial cells,” Diabetologia, vol. 47, no. 10, pp. 1727–1734, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. V. Shah, M. Toruner, F. Haddad et al., “Impaired endothelial nitric oxide synthase activity associated with enhanced caveolin binding in experimental cirrhosis in the rat,” Gastroenterology, vol. 117, no. 5, pp. 1222–1228, 1999. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Shah, S. Cao, H. Hendrickson, J. Yao, and Z. S. Katusic, “Regulation of hepatic eNOS by caveolin and calmodulin after bile duct ligation in rats,” American Journal of Physiology, vol. 280, no. 6, pp. G1209–G1216, 2001. View at Google Scholar · View at Scopus
  42. J. Baranska, “Mechanism of the ATP-dependent phosphatidylserine synthesis in liver subcellular fractions,” FEBS Letters, vol. 256, no. 1-2, pp. 33–37, 1989. View at Publisher · View at Google Scholar · View at Scopus
  43. D. R. Voelker, “Phosphatidylserine translocation to the mitochondrion is an ATP-dependent process in permeabilized animal cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 24, pp. 9921–9925, 1989. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Shinitzky and M. Inbar, “Difference in microviscosity induced by different cholesterol levels in the surface membrane lipid layer of normal lymphocytes and malignant lymphoma cells,” Journal of Molecular Biology, vol. 85, no. 4, pp. 603–615, 1974. View at Google Scholar · View at Scopus
  45. W. J. van Blitterswijk, R. P. van Hoeven, and B. W. van der Meer, “Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements,” Biochimica et Biophysica Acta, vol. 644, no. 2, pp. 323–332, 1981. View at Google Scholar · View at Scopus
  46. K. H. Williams, N. A. Shackel, M. D. Gorrell, S. V. McLennan, and S. M. Twigg, “Diabetes and nonalcoholic fatty liver disease: a pathogenic duo,” Endocrine Reviews, vol. 34, no. 1, pp. 84–129, 2013. View at Publisher · View at Google Scholar
  47. T. M. Davis, K. E. Peters, D. G. Bruce, and W. A. Davis, “Prevalence, incidence, and prognosis of hepatobiliary disease in community-based patients with type 2 diabetes: the Fremantle Diabetes Study,” The Journal of Clinical Endocrinology & Metabolism, vol. 97, pp. 1581–1588, 2012. View at Google Scholar
  48. I. J. Hickman and G. A. Macdonald, “Impact of diabetes on the severity of liver disease,” American Journal of Medicine, vol. 120, no. 10, pp. 829–834, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Knobler and A. Schattner, “TNF-α, chronic hepatitis C and diabetes: a novel triad,” QJM, vol. 98, no. 1, pp. 1–6, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Kuriyama, Y. Miwa, H. Fukushima et al., “Prevalence of diabetes and incidence of angiopathy in patients with chronic viral liver disease,” Journal of Clinical Biochemistry and Nutrition, vol. 40, no. 2, pp. 116–122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. J. O. Jáquez-Quintana, D. García-Compean, J. A. González-González et al., “The impact of diabetes mellitus in mortality of patients with compensated liver cirrhosis—a prospective study,” Annals of Hepatology, vol. 10, no. 1, pp. 56–62, 2011. View at Google Scholar
  52. F. Fujiwara, M. Ishii, H. Taneichi et al., “Low incidence of vascular complications in patients with diabetes mellitus associated with liver cirrhosis as compared with type 2 diabetes mellitus,” Tohoku Journal of Experimental Medicine, vol. 205, no. 4, pp. 327–334, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Loria, A. Lonardo, and F. Anania, “Liver and diabetes. A vicious circle,” Hepatology Research, vol. 43, pp. 51–64, 2013. View at Google Scholar