Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 680816, 12 pages
http://dx.doi.org/10.1155/2013/680816
Research Article

Inhibition of Nuclear Nox4 Activity by Plumbagin: Effect on Proliferative Capacity in Human Amniotic Stem Cells

1Department of Surgical, Medical, Dental and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Via del Pozzo 71, 41100 Modena, Italy
2Department of Obstetrics and Gynecology, Arcispedale Santa Maria Nuova, Viale Risorgimento 80, 42100 Reggio Emilia, Italy

Received 29 July 2013; Revised 18 November 2013; Accepted 19 November 2013

Academic Editor: Cristina Angeloni

Copyright © 2013 Marianna Guida et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Shi, Y. Zhang, J. Zheng, and J. Pan, “Reactive oxygen species in cancer stem cells,” Antioxidants and Redox Signaling, vol. 16, no. 11, pp. 1215–1228, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. S. J. Morrison and A. C. Spradling, “Stem cells and niches: mechanisms that promote stem cell maintenance throughout life,” Cell, vol. 132, no. 4, pp. 598–611, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Arai, A. Hirao, M. Ohmura et al., “Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche,” Cell, vol. 118, no. 2, pp. 149–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Ito, R. Bernardi, A. Morotti et al., “PML targeting eradicates quiescent leukaemia-initiating cells,” Nature, vol. 453, no. 7198, pp. 1072–1078, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. Z. Tothova, R. Kollipara, B. J. Huntly et al., “FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress,” Cell, vol. 128, no. 2, pp. 325–339, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Y.-Y. Jang and S. J. Sharkis, “A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche,” Blood, vol. 110, no. 8, pp. 3056–3063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Pattappa, S. D. Thorpe, N. C. Jegard, H. K. Heywood, J. D. de Bruijn, and D. A. Lee, “Continuous and uninterrupted oxygen tension influences the colony formation and oxidative metabolism of human mesenchymal stem cells,” Tissue Engineering C, vol. 19, no. 1, pp. 68–79, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Dai, X. Zhu, M. C. Yoder, Y. Wu, and R. W. Colman, “Cleaved high-molecular-weight kininogen accelerates the onset of endothelial progenitor cell senescence by induction of reactive oxygen species,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 4, pp. 883–889, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. P. J. Ho, M. L. Yen, B. C. Tang, C. T. Chen, and B. L. Yen, “H2O2 accumulation mediates differentiation capacity alteration, but not proliferative decline, in senescent human fetal mesenchymal stem cells,” Antioxid Redox Signal, vol. 18, no. 15, pp. 1895–1905, 2013. View at Publisher · View at Google Scholar
  10. T. Kietzmann, “Intracellular redox compartments: mechanisms and significances,” Antioxidants & Redox Signaling, vol. 13, no. 4, pp. 395–398, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Y.-M. Go and D. P. Jones, “Redox control systems in the nucleus: mechanisms and functions,” Antioxidants & Redox Signaling, vol. 13, no. 4, pp. 489–509, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R.-M. Liu, J. Choi, J.-H. Wu et al., “Oxidative modification of nuclear mitogen-activated protein kinase phosphatase 1 is involved in transforming growth factor β1-induced expression of plasminogen activator inhibitor 1 in fibroblasts,” The Journal of Biological Chemistry, vol. 285, no. 21, pp. 16239–16247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Chen, M. T. Kirber, H. Xiao, Y. Yang, and J. F. Keaney Jr., “Regulation of ROS signal transduction by NADPH oxidase 4 localization,” The Journal of Cell Biology, vol. 181, no. 7, pp. 1129–1139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. R. K. Ambasta, P. Kumar, K. K. Griendling, H. H. Schmidt, R. Busse, and R. P. Brandes, “Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase,” The Journal of Biological Chemistry, vol. 279, no. 44, pp. 45935–45941, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Block, Y. Gorin, and H. E. Abboud, “Subcellular localization of Nox4 and regulation in diabetes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 34, pp. 14385–14390, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. L. L. Hilenski, R. E. Clempus, M. T. Quinn, J. D. Lambeth, and K. K. Griendling, “Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, no. 4, pp. 677–683, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Y.-M. Lee, B.-J. Kim, Y.-S. Chun et al., “NOX4 as an oxygen sensor to regulate TASK-1 activity,” Cellular Signalling, vol. 18, no. 4, pp. 499–507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Kuroda, K. Nakagawa, T. Yamasaki et al., “The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells,” Genes to Cells, vol. 10, no. 12, pp. 1139–1151, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. P. Wang, F. Tang, R. Li et al., “Contribution of different Nox homologues to cardiac remodeling in two-kidney two-clip renovascular hypertensive rats: effect of valsartan,” Pharmacological Research, vol. 55, no. 5, pp. 408–417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. S. I. Dikalov, A. E. Dikalova, A. T. Bikineyeva, H. H. Schmidt, D. G. Harrison, and K. K. Griendling, “Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production,” Free Radical Biology and Medicine, vol. 45, no. 9, pp. 1340–1351, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Pendyala, I. A. Gorshkova, P. V. Usatyuk et al., “Role of Nox4 and Nox2 in hyperoxia-induced reactive oxygen species generation and migration of human lung endothelial cells,” Antioxidants and Redox Signaling, vol. 11, no. 4, pp. 747–764, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. N. Lyle, N. N. Deshpande, Y. Taniyama et al., “Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells,” Circulation Research, vol. 105, no. 3, pp. 249–259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Gordillo, H. Fang, H. Park, and S. Roy, “Nox-4-dependent nuclear H2O2 drives DNA oxidation resulting in 8-OHdG as urinary biomarker and hemangioendothelioma formation,” Antioxidants and Redox Signaling, vol. 12, no. 8, pp. 933–943, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. N. S. De Mochel, S. Seronello, S. H. Wang et al., “Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection,” Hepatology, vol. 52, no. 1, pp. 47–59, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. U. Weyemi and C. Dupuy, “The emerging role of ROS-generating NADPH oxidase NOX4 in DNA-damage responses,” Mutation Research, vol. 751, no. 2, pp. 77–81, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Lattanzi, S. Marmiroli, A. Facchini, and N. M. Maraldi, “Nuclear damages and oxidative stress: new perspectives for laminopathies,” European Journal of Histochemistry, vol. 56, no. 4, article e45, 2012. View at Publisher · View at Google Scholar
  27. N. Anilkumar, G. S. Jose, I. Sawyer et al., “A 28-kDa splice variant of NADPH oxidase-4 is nuclear-localized and involved in redox signaling in vascular cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 33, no. 4, pp. e104–e112, 2013. View at Publisher · View at Google Scholar
  28. P. De Coppi, G. Bartsch Jr., M. M. Siddiqui et al., “Isolation of amniotic stem cell lines with potential for therapy,” Nature Biotechnology, vol. 25, no. 1, pp. 100–106, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Maraldi, M. Riccio, A. Pisciotta et al., “Human amniotic fluid-derived and dental pulp-derived stem cells seeded into collagen scaffold repair critical-size bone defects promoting vascularization,” Stem Cell Research & Therapy, vol. 4, no. 3, article 53, 2013. View at Publisher · View at Google Scholar
  30. G. Carnevale, M. Riccio, A. Pisciotta et al., “In vitro differentiation into insulin-producing β-cells of stem cells isolated from human amniotic fluid and dental pulp,” Digestive and Liver Disease, vol. 45, no. 8, pp. 669–676, 2013. View at Publisher · View at Google Scholar
  31. A. Trounson, “A fluid means of stem cell generation,” Nature Biotechnology, vol. 25, no. 1, pp. 62–63, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Ding, Z.-J. Chen, S. Liu, D. Che, M. Vetter, and C.-H. Chang, “Inhibition of Nox-4 activity by plumbagin, a plant-derived bioactive naphthoquinone,” Journal of Pharmacy and Pharmacology, vol. 57, no. 1, pp. 111–116, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Zavatti, E. Resca, L. Bertoni et al., “Ferutinin promotes proliferation and osteoblastic differentiation in human amniotic fluid and dental pulp stem cells,” Life Sciences, vol. 92, no. 20-21, pp. 993–1003, 2013. View at Publisher · View at Google Scholar
  34. T. Maraldi, M. Riccio, L. Zambonin, M. Vinceti, A. De Pol, and G. Hakim, “Low levels of selenium compounds are selectively toxic for a human neuron cell line through ROS/RNS increase and apoptotic process activation,” NeuroToxicology, vol. 32, no. 2, pp. 180–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Maraldi, J. Bertacchini, M. Benincasa et al., “Reverse-phase protein microarrays (RPPA) as a diagnostic and therapeutic guide in multidrug resistant leukemia,” International Journal of Oncology, vol. 38, no. 2, pp. 427–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Cenni, J. Bertacchini, F. Beretti et al., “Lamin A Ser404 Is a nuclear target of akt phosphorylation in C2C12 cells,” Journal of Proteome Research, vol. 7, no. 11, pp. 4727–4735, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Cenni, A. Bavelloni, F. Beretti et al., “Ankrd2/ARPP is a novel Akt2 specific substrate and regulates myogenic differentiation upon cellular exposure to H2O2,” Molecular Biology of the Cell, vol. 22, no. 16, pp. 2946–2956, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. C. J. Hanson, M. D. Bootman, C. W. Distelhorst, T. Maraldi, and H. L. Roderick, “The cellular concentration of Bcl-2 determines its pro- or anti-apoptotic effect,” Cell Calcium, vol. 44, no. 3, pp. 243–258, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Resca, M. Zavatti, L. Bertoni et al., “Enrichment in c-Kit+ enhances mesodermal and neural differentiation of human chorionic placental cells,” Placenta, vol. 34, no. 7, pp. 526–535, 2013. View at Publisher · View at Google Scholar
  40. A. Pisciotta, M. Riccio, G. Carnevale et al., “Human serum promotes osteogenic differentiation of human dental pulp stem cells in vitro and in vivo,” PLoS One, vol. 7, no. 11, Article ID e50542, 2012. View at Publisher · View at Google Scholar
  41. M. Riccio, E. Resca, T. Maraldi et al., “Human dental pulp stem cells produce mineralized matrix in 2D and 3D cultures,” European Journal of Histochemistry, vol. 54, no. 4, article 46, 2010. View at Google Scholar · View at Scopus
  42. B. C. Dickinson, Y. Tang, Z. Chang, and C. J. Chang, “A nuclear-localized fluorescent hydrogen peroxide probe for monitoring sirtuin-mediated oxidative stress responses in vivo,” Chemistry and Biology, vol. 18, no. 8, pp. 943–948, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. A. R. Lippert, G. C. Van De Bittner, and C. J. Chang, “Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems,” Accounts of Chemical Research, vol. 44, no. 9, pp. 793–804, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. V. S. Lin, B. C. Dickinson, and C. J. Chang, “Boronate-based fluorescent probes: imaging hydrogen peroxide in living systems,” Methods in Enzymology, vol. 526, pp. 19–43, chapter 2 in Hydrogen Peroxide and Cell Signaling, Part A, 2013. View at Publisher · View at Google Scholar
  45. B. C. Dickinson and C. J. Chang, “Chemistry and biology of reactive oxygen species in signaling or stress responses,” Nature Chemical Biology, vol. 7, no. 8, pp. 504–511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Altenhöfer, P. W. Kleikers, K. A. Radermacher et al., “The NOX toolbox: validating the role of NADPH oxidases in physiology and disease,” Cellular and Molecular Life Sciences, vol. 69, no. 14, pp. 2327–2343, 2012. View at Publisher · View at Google Scholar
  47. K. D. Pendergrass, T. M. Gwathmey, R. D. Michalek, J. M. Grayson, and M. C. Chappell, “The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus,” Biochemical and Biophysical Research Communications, vol. 384, no. 2, pp. 149–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Y. Spencer, Z. Yan, R. L. Boudreau et al., “Control of hepatic nuclear superoxide production by glucose 6-phosphate dehydrogenase and NADPH oxidase-4,” The Journal of Biological Chemistry, vol. 286, no. 11, pp. 8977–8987, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. R.-F. Wu, Z. Ma, Z. Liu, and L. S. Terada, “Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local ras activation,” Molecular and Cellular Biology, vol. 30, no. 14, pp. 3553–3568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Chen, J.-K. Chen, and R. C. Harris, “Angiotensin II induces epithelial-to-mesenchymal transition in renal epithelial cells through reactive oxygen species/Src/caveolin-mediated activation of an epidermal growth factor receptor-extracellular signal-regulated kinase signaling pathway,” Molecular and Cellular Biology, vol. 32, no. 5, pp. 981–991, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. K. J. Schmitz, H. Lang, J. Wohlschlaeger et al., “AKT and ERK1/2 signaling in intrahepatic cholangiocarcinoma,” World Journal of Gastroenterology, vol. 13, no. 48, pp. 6470–6477, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. J. D. Lambeth, “NOX enzymes and the biology of reactive oxygen,” Nature Reviews Immunology, vol. 4, no. 3, pp. 181–189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. D. I. Brown and K. K. Griendling, “Nox proteins in signal transduction,” Free Radical Biology and Medicine, vol. 47, no. 9, pp. 1239–1253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Mikuła-Pietrasik, A. Kuczmarska, B. Rubiś et al., “Resveratrol delays replicative senescence of human mesothelial cells via mobilization of antioxidative and DNA repair mechanisms,” Free Radical Biology and Medicine, vol. 52, no. 11-12, pp. 2234–2245, 2012. View at Publisher · View at Google Scholar
  55. P. J. Cook, B. G. Ju, F. Telese, X. Wang, C. K. Glass, and M. G. Rosenfeld, “Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions,” Nature, vol. 458, no. 7238, pp. 591–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. J. Zeitz, K. S. Malyavantham, B. Seifert, and R. Berezney, “Matrin 3: chromosomal distribution and protein interactions,” Journal of Cellular Biochemistry, vol. 108, no. 1, pp. 125–133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. G. M. Bokoch, B. Diebold, J.-S. Kim, and D. Gianni, “Emerging evidence for the importance of phosphorylation in the regulation of NADPH oxidases,” Antioxidants and Redox Signaling, vol. 11, no. 10, pp. 2429–2441, 2009. View at Publisher · View at Google Scholar · View at Scopus