Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 685909, 12 pages
http://dx.doi.org/10.1155/2013/685909
Research Article

Neuroprotective Effects of a Variety of Pomegranate Juice Extracts against MPTP-Induced Cytotoxicity and Oxidative Stress in Human Primary Neurons

1Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW 2031, Australia
2Department of Food Science and Nutrition, College of Agriculture and Marine Sciences, Sultan Qaboos University, P.O. Box 50, Muscat 123, Oman
3Ageing and Dementia Research Group, Sultan Qaboos University, P.O. Box 50, Muscat 123, Oman
4College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 50, Muscat 123, Oman
5Neuropharmacology Group, MND and Neurodegenerative Diseases Research Group, Australian School of Advanced Medicine (ASAM), Macquarie University, Sydney, NSW 2109, Australia

Received 20 June 2013; Revised 2 August 2013; Accepted 2 August 2013

Academic Editor: Tullia Maraldi

Copyright © 2013 Nady Braidy et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Lo Bianco, B. L. Schneider, M. Bauer et al., “Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an α-synuclein rat model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 50, pp. 17510–17515, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Mandel, E. Grünblatt, P. Riederer, M. Gerlach, Y. Levites, and M. B. H. Youdim, “Neuroprotective strategies in Parkinson's disease: an update on progress,” CNS Drugs, vol. 17, no. 10, pp. 729–762, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. P. G. Butterfield, “Environment: seeking clues to Parkinson's disease.,” Reflections, vol. 22, no. 3, pp. 14–15, 1996. View at Google Scholar · View at Scopus
  4. W. R. Markesbery, “Neuropathological criteria for the diagnosis of Alzheimer's disease,” Neurobiology of Aging, vol. 18, supplement 4, pp. S13–S19, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. M. J. Ball and G. H. Murdoch, “Neuropathological criteria for the diagnosis of Alzheimer's disease: are we really ready yet?” Neurobiology of Aging, vol. 18, supplement 4, pp. S3–S12, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Kumar, S. Koppula, I. S. Kim, S. V. More, B. W. Kim, and D. K. Choi, “Nuclear factor erythroid 2—related factor 2 signaling in Parkinson disease: a promising multi therapeutic target against oxidative stress, neuroinflammation and cell death,” CNS and Neurological Disorders, vol. 11, no. 8, pp. 1015–1029, 2012. View at Google Scholar
  7. M. H. Yan, X. Wang, and X. Zhu, “Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease,” Free Radical Biology and Medicine, vol. 62, pp. 90–101, 2013. View at Google Scholar
  8. R. Perfeito, T. Cunha-Oliveira, and A. C. Rego, “Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease—resemblance to the effect of amphetamine drugs of abuse,” Free Radical Biology and Medicine, vol. 53, no. 9, pp. 1791–1806, 2012. View at Google Scholar
  9. H. J. Jeong, D. W. Kim, S. J. Woo et al., “Transduced Tat-DJ-1 protein protects against oxidative stress-induced SH-SY5Y cell death and Parkinson disease in a mouse model,” Molecules and Cells, vol. 33, no. 5, pp. 471–478, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Chien, T. Lee, S. Hung, K. Kang, and W. Fu, “Impairment of oxidative stress-induced heme oxygenase-1 expression by the defect of Parkinson-related gene of PINK1,” Journal of Neurochemistry, vol. 117, no. 4, pp. 643–653, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Bayir, A. A. Kapralov, J. Jiang et al., “Peroxidase mechanism of lipid-dependent cross-linking of synuclein with cytochrome c. Protection against apoptosis versus delayed oxidative stress in Parkinson disease,” The Journal of Biological Chemistry, vol. 284, no. 23, pp. 15951–15969, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Henchcliffe and F. M. Beal, “Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis,” Nature Clinical Practice Neurology, vol. 4, no. 11, pp. 600–609, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. J. Bloomer, B. K. Schilling, R. E. Karlage, M. S. Ledoux, R. F. Pfeiffer, and J. Callegari, “Effect of resistance training on blood oxidative stress in Parkinson disease,” Medicine and Science in Sports and Exercise, vol. 40, no. 8, pp. 1385–1389, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Nunomura, P. I. Moreira, H. G. Lee et al., “Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases,” CNS and Neurological Disorders, vol. 6, no. 6, pp. 411–423, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Battisti, P. Formichi, E. Radi, and A. Federico, “Oxidative-stress-induced apoptosis in PBLs of two patients with Parkinson disease secondary to alpha-synuclein mutation,” Journal of the Neurological Sciences, vol. 267, no. 1-2, pp. 120–124, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Yamamoto, H. Sawada, Y. Izumi et al., “Proteasome inhibition induces glutathione synthesis and protects cells from oxidative stress: relevance to Parkinson disease,” The Journal of Biological Chemistry, vol. 282, no. 7, pp. 4364–4372, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Ebadi and S. Sharma, “Metallothioneins 1 and 2 attenuate peroxynitrite-induced oxidative stress in Parkinson disease,” Experimental Biology and Medicine, vol. 231, no. 9, pp. 1576–1583, 2006. View at Google Scholar · View at Scopus
  18. G. A. Veech, J. Dennis, P. M. Keeney et al., “Disrupted mitochondrial electron transport function increases expression of anti-apoptotic bcl-2 and bcl-X(L) proteins in SH-SY5Y neuroblastoma and in Parkinson disease cybrid cells through oxidative stress,” Journal of Neuroscience Research, vol. 61, no. 6, pp. 693–700, 2000. View at Google Scholar
  19. M. E. González-Fraguela, “Indicators of oxidative stress and the effect of antioxidant treatment in patients with primary Parkinson's disease,” Revista de Neurologia, vol. 26, no. 149, pp. 28–33, 1998. View at Google Scholar · View at Scopus
  20. R. Castellani, M. A. Smith, P. L. Richey, and G. Perry, “Glycoxidation and oxidative stress in Parkinson disease and diffuse Lewy body disease,” Brain Research, vol. 737, no. 1-2, pp. 195–200, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. J. W. Langston and P. A. Ballard Jr., “Parkinson's disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine,” The New England Journal of Medicine, vol. 309, no. 5, p. 310, 1983. View at Google Scholar · View at Scopus
  22. R. S. Burns, C. C. Chiueh, S. P. Markey, M. H. Ebert, D. M. Jacobowitz, and I. J. Kopin, “A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 14 I, pp. 4546–4550, 1983. View at Google Scholar · View at Scopus
  23. J. W. Langston and P. Ballard, “Parkinsonism induced by 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP): implications for treatment and the pathogenesis of Parkinson's disease,” Canadian Journal of Neurological Sciences, vol. 11, supplement 1, pp. 160–165, 1984. View at Google Scholar · View at Scopus
  24. A. R. Crossman, D. Peggs, S. Boyce, M. R. Luquin, and M. A. Sambrook, “Effect of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey,” Neuropharmacology, vol. 28, no. 11, pp. 1271–1273, 1989. View at Google Scholar · View at Scopus
  25. K. Chiba, A. Trevor, and N. Castagnoli Jr., “Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase,” Biochemical and Biophysical Research Communications, vol. 120, no. 2, pp. 574–578, 1984. View at Google Scholar · View at Scopus
  26. T. P. Singer, N. Castagnoli Jr., R. R. Ramsay, and A. J. Trevor, “Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,” Journal of Neurochemistry, vol. 49, no. 1, pp. 1–8, 1987. View at Google Scholar · View at Scopus
  27. M. F. D. Notter, I. Irwin, J. W. Langston, and D. M. Gash, “Neurotoxicity of MPTP and MPP+ in vitro: characterization using specific cell lines,” Brain Research, vol. 456, no. 2, pp. 254–262, 1988. View at Google Scholar · View at Scopus
  28. P. Langley, “Why a pomegranate?” British Medical Journal, vol. 321, no. 7269, pp. 1153–1154, 2000. View at Google Scholar · View at Scopus
  29. A. Vidal, A. Fallarero, B. R. Peña et al., “Studies on the toxicity of Punica granatum L. (Punicaceae) whole fruit extracts,” Journal of Ethnopharmacology, vol. 89, no. 2-3, pp. 295–300, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. B. B. Aggarwal and S. Shishodia, “Suppression of the nuclear factor-κB activation pathway by spice-derived phytochemicals: reasoning for seasoning,” Annals of the New York Academy of Sciences, vol. 1030, pp. 434–441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Ashoori, S. Suzuki, J. H. Z. Zhou, N. Isshiki, and Y. Miyachi, “Involvement of lipid peroxidation in necrosis of skin flaps and its suppression by ellagic acid,” Plastic and Reconstructive Surgery, vol. 94, no. 7, pp. 1027–1037, 1994. View at Google Scholar · View at Scopus
  32. M. Hirose, R. Hasegawa, J. Kimura et al., “Inhibitory effects of 1-O-hexyl-2,3,5-trimethylhydroquinone (HTHQ), green tea catechins and other antioxidants on 2-amino-6-methyldipyrido[1,2-a:3',2'-d] (Glu-P-1)-induced rat hepatocarcinogenesis and dose-dependent inhibition by HTHQ of lesion induction by Glu-P-1 or 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx),” Carcinogenesis, vol. 16, no. 12, pp. 3049–3055, 1995. View at Google Scholar · View at Scopus
  33. N. D. Kim, R. Mehta, W. Yu et al., “Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer,” Breast Cancer Research and Treatment, vol. 71, no. 3, pp. 203–217, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. M. I. Gil, F. A. Tomas-Barberan, B. Hess-Pierce, D. M. Holcroft, and A. A. Kader, “Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing,” Journal of Agricultural and Food Chemistry, vol. 48, no. 10, pp. 4581–4589, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Aviram, “Pomegranate juice as a major source for polyphenolic flavonoids and it is most potent antioxidant against LDL oxidation and atherosclerosis,” in Proceedings of the 11th Biennial Meeting of the Society for Free Radical Research International, pp. 523–528, July 2002.
  36. M. Aviram, “Pomegranate juice as a major source for polyphenolic flavonoids and it is most potent antioxidant against LDL oxidation and atherosclerosis,” Free Radical Biology and Medicine, vol. 33, pp. S139–S140, 2002. View at Google Scholar
  37. M. Aviram, M. Rosenblat, D. Gaitini et al., “Corrigendum to: pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation, Clinical Nutrition, vol. 23, pp. 423–433, 2004,” Clinical Nutrition, vol. 27, no. 4, p. 671, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Bandeira Sde, M. Bandeira Sde, S. Guedes Gda, L. J. da Fonseca et al., “Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 819310, 13 pages, 2012. View at Publisher · View at Google Scholar
  39. A. Butterfield, A. M. Swomley, and R. Sultana, “Amyloid β-peptide (1-42)-induced oxidative stress in alzheimer disease: importance in disease pathogenesis and progression,” Antioxidants and Redox Signaling, vol. 19, no. 8, pp. 823–835, 2012. View at Google Scholar
  40. J. Mori-Okamoto, Y. Otawara-Hamamoto, H. Yamato, and H. Yoshimura, “Pomegranate extract improves a depressive state and bone properties in menopausal syndrome model ovariectomized mice,” Journal of Ethnopharmacology, vol. 92, no. 1, pp. 93–101, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Rosenblat and M. Aviram, “Antioxidants as targeted therapy: a special protective role for pomegranate and paraoxonases (PONs),” in Asymptomatic Atherosclerosis: Pathophysiology, Detection and Treatment, pp. 621–634, Humana Press, New Jersey, NJ, USA, 2010. View at Google Scholar
  42. M. Rosenblat, T. Hayek, and M. Aviram, “Anti-oxidative effects of pomegranate juice (PJ) consumption by diabetic patients on serum and on macrophages,” Atherosclerosis, vol. 187, no. 2, pp. 363–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Rosenblat, N. Volkova, and M. Aviram, “Pomegranate juice (PJ) consumption antioxidative properties on mouse macrophages, but not PJ beneficial effects on macrophage cholesterol and triglyceride metabolism, are mediated via PJ-induced stimulation of macrophage PON2,” Atherosclerosis, vol. 212, no. 1, pp. 86–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. V. R. Sagar and P. S. Kumar, “Recent advances in drying and dehydration of fruits and vegetables: a review,” Journal of Food Science and Technology, vol. 47, no. 1, pp. 15–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Bchir, S. Besbes, H. Attia, and C. Blecker, “Osmotic dehydration of pomegranate seeds (Punica granatum l.): effect of freezing pre-treatment,” Journal of Food Process Engineering, vol. 35, no. 3, pp. 335–354, 2012. View at Google Scholar
  46. K. I. Berker, F. A. O. Olgun, D. Ozyurt et al., “Modified Folin-Ciocalteu antioxidant capacity assay for measuring lipophilic antioxidants,” Journal of Agricultural and Food Chemistry, vol. 61, no. 20, pp. 4783–4791, 2013. View at Google Scholar
  47. G. J. Guillemin, G. Smythe, O. Takikawa, and B. J. Brew, “Expression of indoleamine 2,3-dioxygenase and production of quinolinic acid by human microglia, astrocytes, and neurons,” Glia, vol. 49, no. 1, pp. 15–23, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. G. J. Guillemin, K. M. Cullen, C. K. Lim et al., “Characterization of the kynurenine pathway in human neurons,” Journal of Neuroscience, vol. 27, no. 47, pp. 12884–12892, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Bernofsky and M. Swan, “An improved cycling assay for nicotinamide adenine dinucleotide,” Analytical Biochemistry, vol. 53, no. 2, pp. 452–458, 1973. View at Google Scholar · View at Scopus
  50. R. S. Grant and V. Kapoor, “Murine glial cells regenerate NAD, after peroxide-induced depletion, using either nicotinic acid, nicotinamide, or quinolinic acid as substrates,” Journal of Neurochemistry, vol. 70, no. 4, pp. 1759–1763, 1998. View at Google Scholar · View at Scopus
  51. J. Y. Koh and D. W. Choi, “Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay,” Journal of Neuroscience Methods, vol. 20, no. 1, pp. 83–90, 1987. View at Google Scholar · View at Scopus
  52. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 53, pp. 452–458, 1976. View at Google Scholar · View at Scopus
  53. V. Cordesse, T. Jametal, C. Guy et al., “Analysis of clinical pathway in changing and disabling neurological diseases,” Revue Neurologique, vol. 169, no. 6-7, pp. 476–484, 2013. View at Google Scholar
  54. P. J. Houghton and M. Howes, “Natural products and derivatives affecting neurotransmission relevant to Alzheimer's and Parkinson's disease,” NeuroSignals, vol. 14, no. 1-2, pp. 6–22, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. R. B. Mythri, G. Harish, and M. M. Bharath, “Therapeutic potential of natural products in Parkinson's disease,” Recent Patents on Endocrine, Metabolic and Immune Drug Discovery, vol. 6, no. 3, pp. 181–200, 2012. View at Google Scholar
  56. R. E. Hartman, A. Shah, A. M. Fagan et al., “Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer's disease,” Neurobiology of Disease, vol. 24, no. 3, pp. 506–515, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. S. P. Markey, J. N. Johannessen, and C. C. Chiueh, “Intraneuronal generation of a pyridinium metabolite may cause drug-induced parkinsonism,” Nature, vol. 311, no. 5985, pp. 464–467, 1984. View at Google Scholar · View at Scopus
  58. P. W. Ho, W. Je. Ho, L. Liu et al., “Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease,” Translational Neurodegeneration, vol. 1, no. 1, article 3, 2012. View at Google Scholar
  59. R. K. Kutty, G. Santostasi, J. Horng, and G. Krishna, “MPTP-induced ATP depletion and cell death in neuroblastoma X glioma hybrid NG 108-15 cells: protection by glucose and sensitization by tetraphenylborate,” Toxicology and Applied Pharmacology, vol. 107, no. 2, pp. 377–388, 1991. View at Publisher · View at Google Scholar · View at Scopus
  60. I. Dalle-Donne, R. Rossi, R. Colombo, D. Giustarini, and A. Milzani, “Biomarkers of oxidative damage in human disease,” Clinical Chemistry, vol. 52, no. 4, pp. 601–623, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. V. Shulaev and D. J. Oliver, “Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research,” Plant Physiology, vol. 141, no. 2, pp. 367–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Thiffault, N. Aumont, R. Quirion, and J. Poirier, “Effect of MPTP and L-deprenyl on antioxidant enzymes and lipid peroxidation levels in mouse brain,” Journal of Neurochemistry, vol. 65, no. 6, pp. 2725–2733, 1995. View at Google Scholar · View at Scopus
  63. S. Kar and M. Kavdia, “Endothelial NO and O2.− radical dot-production rates differentially regulate oxidative, nitroxidative, and nitrosative stress in the microcirculation,” Free Radical Biology and Medicine, vol. 63, pp. 161–174, 2013. View at Publisher · View at Google Scholar
  64. L. C. Ribeiro, L. Rodrigues, A. Quincozes-Santos et al., “Caloric restriction improves basal redox parameters in hippocampus and cerebral cortex of Wistar rats,” Brain Research, vol. 1472, pp. 11–19, 2012. View at Google Scholar
  65. I. Dokic, C. Hartmann, C. Herold-Mende et al., “Glutathione peroxidase 1 activity dictates the sensitivity of glioblastoma cells to oxidative stress,” Glia, vol. 60, no. 11, pp. 1785–1800, 2012. View at Google Scholar
  66. L. A. Esposito, J. E. Kokoszka, K. G. Waymire, B. Cottrell, G. R. MacGregor, and D. C. Wallace, “Mitochondrial oxidative stress in mice lacking the glutathione peroxidase-1 gene,” Free Radical Biology and Medicine, vol. 28, no. 5, pp. 754–766, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Inoue, L. Tran, M. Kamakura et al., “Oxidative stress response in yeast: glutathione peroxidase of Hansenula mrakii is bound to the membrane of both mitochondria and cytoplasm,” Biochimica et Biophysica Acta, vol. 1245, no. 3, pp. 325–330, 1995. View at Publisher · View at Google Scholar · View at Scopus
  68. J. H. Doroshow, “Glutathione peroxidase and oxidative stress,” Toxicology Letters, vol. 82-83, pp. 395–398, 1995. View at Publisher · View at Google Scholar · View at Scopus
  69. D. G. Hom, D. Jiang, E. Hong, J. Q. Mo, and J. K. Andersen, “Elevated expression of glutathione peroxidase in PC12 cells results in protection against methamphetamine but not MPTP toxicity,” Molecular Brain Research, vol. 46, no. 1-2, pp. 154–160, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. D. A. Drechsel, L. Liang, and M. Patel, “1-methyl-4-phenylpyridinium-induced alterations of glutathione status in immortalized rat dopaminergic neurons,” Toxicology and Applied Pharmacology, vol. 220, no. 3, pp. 341–348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Hirrlinger, J. M. Gutterer, L. Kussmaul, B. Hamprecht, and R. Dringen, “Microglial cells in culture express a prominent glutathione system for the defense against reactive oxygen species,” Developmental Neuroscience, vol. 22, no. 5-6, pp. 384–392, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Hirrlinger, B. Hamprecht, and R. Dringen, “Application and modulation of a permanent hydrogen peroxide-induced oxidative stress to cultured astroglial cells,” Brain Research Protocols, vol. 4, no. 2, pp. 223–229, 1999. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Croitoru-Lamoury, G. J. Guillemin, F. D. Boussin et al., “Expression of chemokines and their receptors in human and simian astrocytes: evidence for a central role of TNFα and IFNγ in CXCR4 and CCR5 modulation,” Glia, vol. 41, no. 4, pp. 354–370, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. G. J. Guillemin, J. Croitoru-Lamoury, D. Dormont, P. J. Armati, and B. J. Brew, “Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes,” Glia, vol. 41, no. 4, pp. 371–381, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. K. S. Panickar and S. Jang, “Dietary and plant polyphenols exert neuroprotective effects and improve cognitive function in cerebral ischemia,” Recent Patents on Food, Nutrition and Agriculture, vol. 5, no. 2, pp. 128–143, 2013. View at Google Scholar
  76. K. S. Panickar, “Bioactive components of plant products including polyphenols exert neuroprotective effects and benefit neural function,” Central Nervous System Agents in Medicinal Chemistry, vol. 13, no. 1, article 2, 2013. View at Google Scholar
  77. L. Tavares, I. Figueira, G. J. McDougall et al., “Neuroprotective effects of digested polyphenols from wild blackberry species,” European Journal of Nutrition, vol. 52, no. 1, pp. 225–236, 2013. View at Google Scholar
  78. M. M. Essa, R. K. Vijayan, G. Castellano-Gonzalez et al., “Neuroprotective effect of natural products against Alzheimer's disease,” Neurochemical Research, vol. 37, no. 9, pp. 1829–1842, 2012. View at Google Scholar
  79. S. Petti and C. Scully, “Polyphenols, oral health and disease: a review,” Journal of Dentistry, vol. 37, no. 6, pp. 413–423, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. N. P. Seeram, Y. Zhang, R. McKeever et al., “Pomegranate juice and extracts provide similar levels of plasma and urinary ellagitannin metabolites in human subjects,” Journal of Medicinal Food, vol. 11, no. 2, pp. 390–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. A. Basu and K. Penugonda, “Pomegranate juice: a heart-healthy fruit juice,” Nutrition Reviews, vol. 67, no. 1, pp. 49–56, 2009. View at Publisher · View at Google Scholar · View at Scopus