Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 802734, 11 pages
http://dx.doi.org/10.1155/2013/802734
Research Article

Magnesium Can Protect against Vanadium-Induced Lipid Peroxidation in the Hepatic Tissue

1Department of Zoology and Invertebrate Ecology, Laboratory of Physiology and Animal Biochemistry, The John Paul II Catholic University of Lublin, 102 Kraśnicka Avenue, 20-718 Lublin, Poland
2Centre of Interdisciplinary Research, Laboratory of Oxidative Stress, The John Paul II Catholic University of Lublin, 102 Kraśnicka Avenue, 20-718 Lublin, Poland

Received 3 February 2013; Revised 7 April 2013; Accepted 8 April 2013

Academic Editor: Kota V. Ramana

Copyright © 2013 Agnieszka Ścibior et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Klaunig, Y. Xu, J. S. Isenberg et al., “The role of oxidative stress in chemical carcinogenesis,” Environmental Health Perspectives, vol. 106, supplement 1, pp. 289–295, 1998. View at Google Scholar · View at Scopus
  2. G. Bartosz, Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie, Wydawnictwo Naukowe PWN, Warszawa, Poland, 2004.
  3. E. Niki, “Lipid peroxidation: physiological levels and dual biological effects,” Free Radical Biology and Medicine, vol. 47, no. 5, pp. 469–484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. E. Niki, Y. Yoshida, Y. Saito, and N. Noguchi, “Lipid peroxidation: mechanisms, inhibition, and biological effects,” Biochemical and Biophysical Research Communications, vol. 338, no. 1, pp. 668–676, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Srivastava, B. Chandrasekar, A. Bhatnagar, and S. D. Prabhu, “Lipid peroxidation-derived aldehydes and oxidative stress in the failing heart: role of aldose reductase,” American Journal of Physiology, vol. 283, no. 6, pp. H2612–H2619, 2002. View at Google Scholar · View at Scopus
  6. Z. H. Chen and E. Niki, “Two faces of lipid peroxidation products: the “Yin and Yang“ principles of oxidative stress,” Journal of Experimental and Integrative Medicine, vol. 1, no. 4, pp. 215–219, 2011. View at Google Scholar
  7. M. A. Altamirano-Lozano and M. E. Roldán-Reyes, “Genetic toxicology of vanadium compounds,” in Vanadium in the Environment Part II: Health Effects, J. O. Nriagu, Ed., vol. 31, pp. 159–179, John Wiley & Sons, New York, NY, USA, 1998. View at Google Scholar
  8. A. Goc, “Biological activity of vanadium compounds,” Central European Journal of Biology, vol. 1, no. 3, pp. 314–332, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. O. Nriagu, Vanadium in the Environment. Health Effects, vol. 31, part 2, John Wiley & Sons, New York, NY, USA, 1998.
  10. J. Z. Byczkowski and A. P. Kulkarni, “Oxidative stress and pro-oxidant biological effects of vanadium,” in Vanadium in the Environment Part II: Health Effects, J. O. Nriagu, Ed., vol. 31, pp. 235–264, John Wiley & Sons, New York, NY, USA, 1998. View at Google Scholar
  11. A. Ścibior, H. Zaporowska, and I. Niedźwiecka, “Lipid peroxidation in the liver of rats treated with V and/or Mg in drinking water,” Journal of Applied Toxicology, vol. 29, no. 7, pp. 619–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Ścibior, H. Zaporowska, and I. Niedźwiecka, “Lipid peroxidation in the kidney of rats treated with V and/or Mg in drinking water,” Journal of Applied Toxiology, vol. 30, no. 5, pp. 487–496, 2010. View at Google Scholar
  13. N. H. Stacey and C. D. Klaassen, “Comparison of the effects of metals on cellular injury and lipid peroxidation in isolated rat hepatocytes,” Journal of Toxicology and Environmental Health, vol. 7, no. 1, pp. 139–147, 1981. View at Google Scholar · View at Scopus
  14. J. Donaldson and F. LaBella, “Prooxidant properties of vanadate in vitro on catecholamines and on lipid peroxidation by mouse and rat tissues,” Journal of Toxicology and Environmental Health, vol. 12, no. 1, pp. 119–126, 1983. View at Google Scholar · View at Scopus
  15. J. Donaldson, R. Hemming, and F. LaBella, “Vanadium exposure enhances lipid peroxidation in the kidney of rats and mice,” Canadian Journal of Physiology and Pharmacology, vol. 63, no. 3, pp. 196–199, 1985. View at Google Scholar · View at Scopus
  16. M. H. Oster, J. M. Llobet, J. L. Domingo, J. B. German, and C. L. Keen, “Vanadium treatment of diabetic Sprague-Dawley rats results in tissue vanadium accumulation and pro-oxidant effects,” Toxicology, vol. 83, no. 1–3, pp. 115–130, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Furuno, T. Suetsugu, and N. Sugihara, “Effects of metal ions on lipid peroxidation in cultured rat hepatocytes loaded with α-linolenic acid,” Journal of Toxicology and Environmental Health A, vol. 48, no. 2, pp. 121–129, 1996. View at Google Scholar · View at Scopus
  18. A. Soussi, F. Croute, J. P. Soleilhavoup, A. Kammoun, and A. El Feki, “Impact of green tea on oxidative stress induced by ammonium metavanadate exposure in male rats,” Comptes Rendus, vol. 329, no. 10, pp. 775–784, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. S. Soares, H. Martins, R. O. Duarte et al., “Vanadium distribution, lipid peroxidation and oxidative stress markers upon decavanadate in vivo administration,” Journal of Inorganic Biochemistry, vol. 101, no. 1, pp. 80–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Deng, H. Cui, X. Peng et al., “Dietary vanadium induces oxidative stress in the intestine of broilers,” Biological Trace Element Research, vol. 145, pp. 52–58, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Liu, H. Cui, X. Liu et al., “Dietary vanadium causes oxidative damage-induced renal and hepatic toxicity in broilers,” Biological Trace Element Research, vol. 145, no. 2, pp. 189–200, 2012. View at Google Scholar
  22. T. Matsubara, S. Musat-Marcu, H. P. Misra, and N. S. Dhalla, “Protective effect of vanadate on oxyradical-induced changes in isolated perfused heart,” Molecular and Cellular Biochemistry, vol. 153, no. 1-2, pp. 79–85, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. M. C. Cam, R. W. Brownsey, and J. H. McNeill, “Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent?” Canadian Journal of Physiology and Pharmacology, vol. 78, no. 10, pp. 829–847, 2000. View at Google Scholar · View at Scopus
  24. A. Bishayee, R. Karmakar, A. Mandal, S. N. Kundu, and M. Chatterjee, “Vanadium-mediated chemoprotection against chemical hepatocarcinogenesis in rats: haematological and histological characteristics,” European Journal of Cancer Prevention, vol. 6, no. 1, pp. 58–70, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. P. S. Kanna, C. B. Mahendrakumar, B. N. Indira et al., “Chemopreventive effects of vanadium toward 1,2-dimethylhydrazine-induced genotoxicity and preneoplastic lesions in rat colon,” Environmental and Molecular Mutagenesis, vol. 44, no. 2, pp. 113–118, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. T. Chakraborty, A. Chatterjee, M. G. Saralaya, D. Dhachinamoorthi, and M. Chatterjee, “Vanadium inhibits the development of 2-acetylaminofluorene-induced premalignant phenotype in a two-stage chemical rat hepatocarcinogenesis model,” Life Sciences, vol. 78, no. 24, pp. 2839–2851, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Niedworok, M. Wardas, M. Stec, and M. Dołowy, “Ocena procesu peroksydacji lipidów modyfikowanego jonami magnezu i etanolem w izolowanych hepatocytach szczura,” Nowiny Lekarskie, vol. 71, no. 6, pp. 295–298, 2002. View at Google Scholar
  28. R. F. Regan, E. Jasper, Y. Guo, and S. S. Panter, “The effect of magnesium on oxidative neuronal injury in vitro,” Journal of Neurochemistry, vol. 70, no. 1, pp. 77–85, 1998. View at Google Scholar · View at Scopus
  29. Y. Yamaguchi, S. Kitagawa, M. Kunitomo, and M. Fujiwara, “Preventive effects of magnesium on raised serum lipid peroxide levels and aortic cholesterol deposition in mice fed an atherogenic diet,” Magnesium Research, vol. 7, no. 1, pp. 31–37, 1994. View at Google Scholar · View at Scopus
  30. H. Bariskaner, M. E. Ustun, A. Ak, A. Yosunkaya, H. B. Ulusoy, and M. Gurbilek, “Effects of magnesium sulfate on tissue lactate and malondialdehyde levels after cerebral ischemia,” Pharmacology, vol. 68, no. 3, pp. 162–168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. C. P. Hans, D. P. Chaudhary, and D. D. Bansal, “Effect of magnesium supplementation on oxidative stress in alloxanic diabetic rats,” Magnesium Research, vol. 16, no. 1, pp. 13–19, 2003. View at Google Scholar · View at Scopus
  32. N. Sahin, M. Onderci, K. Sahin, G. Cikim, and O. Kucuk, “Magnesium proteinate is more protective than magnesium oxide in heat-stressed quail,” Journal of Nutrition, vol. 135, no. 7, pp. 1732–1737, 2005. View at Google Scholar · View at Scopus
  33. C. Abad, A. Teppa-Garrán, T. Proverbio, S. Piñero, F. Proverbio, and R. Marín, “Effect of magnesium sulfate on the calcium-stimulated adenosine triphosphatase activity and lipid peroxidation of red blood cell membranes from preeclamptic women,” Biochemical Pharmacology, vol. 70, no. 11, pp. 1634–1641, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. A. C. Ariza, N. Bobadilla, C. Fernández, R. M. Muñoz-Fuentes, F. Larrea, and A. Halhali, “Effects of magnesium sulfate on lipid peroxidation and blood pressure regulators in preeclampsia,” Clinical Biochemistry, vol. 38, no. 2, pp. 128–133, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Shukla, V. Singh, and D. Joshi, “Modulation of toxic effects of organic mercury by different antioxidants,” Toxicology International, vol. 14, no. 1, pp. 67–71, 2007. View at Google Scholar · View at Scopus
  36. A. Ścibior, A. Adamczyk, D. Golłębiowska, and I. Niedźwiecka, “Effect of 12-week vanadate and magnesium co-administration on chosen haematological parameters as well as on some indices of iron and copper metabolism and biomarkers of oxidative stress in rats,” Environmental Toxicology and Pharmacology, vol. 34, no. 2, pp. 235–252, 2012. View at Google Scholar
  37. J. L. Domingo, “Vanadium: a review of the reproductive and developmental toxicity,” Reproductive Toxicology, vol. 10, no. 3, pp. 175–182, 1996. View at Google Scholar · View at Scopus
  38. M. Matsuda, L. Mandarino, and R. A. DeFronzo, “Synergistic interaction of magnesium and vanadate on glucose metabolism in diabetic rats,” Metabolism, vol. 48, no. 6, pp. 725–731, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. U.S. EPA (United States Environmental Protection Agency), “Drinking water advisory: consumer acceptability advice and health effects analysis on sulphate,” EPA 822-R-03-007, February 2003. View at Google Scholar
  40. WHO (World Health Organization), “Sulfate in drinking water,” Background Document For Development of WHO Guidelines For Drinking-Water Quality WHO/SDE/WSH/03.04/114, 2004. View at Google Scholar
  41. A. A. Gołubiew, E. I. Lublina, N. A. Tołokncew, and W. A. Fiłow, Toksykologia Ilościowa, Wydawnictwo Lekarskie PZWL, Warszawa, Poland, 1978.
  42. A. Ścibior and H. Zaporowska, “Effects of combined vanadate and magnesium treatment on erythrocyte antioxidant defence system in rats,” Environmental Toxicology and Pharmacology, vol. 30, no. 2, pp. 153–161, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Ścibior, H. Zaporowska, A. Wolińska, and J. Ostrowski, “Antioxidant enzyme activity and lipid peroxidation in the blood of rats co-treated with vanadium (V+5) and chromium (Cr+3),” Cell Biology and Toxicology, vol. 26, no. 6, pp. 509–526, 2010. View at Google Scholar
  44. M. Younes, M. Albrecht, and C. F. Siegers, “Lipid peroxidation and lysosomal enzyme release induced by vanadate in vitro,” Research Communications in Chemical Pathology and Pharmacology, vol. 43, no. 3, pp. 487–495, 1984. View at Google Scholar · View at Scopus
  45. M. Elfant and C. L. Keen, “Sodium vanadate toxicity in adult and developing rats. Role of peroxidative damage,” Biological Trace Element Research, vol. 14, no. 3, pp. 193–208, 1987. View at Google Scholar · View at Scopus
  46. E. Russanov, H. Zaporowska, E. Ivancheva, M. Kirkova, and S. Konstantinova, “Lipid peroxidation and antioxidant enzymes in vanadate-treated rats,” Comparative Biochemistry and Physiology C, vol. 107, no. 3, pp. 415–421, 1994. View at Google Scholar · View at Scopus
  47. M. Younes and O. Strubelt, “Vanadate-induced toxicity towards isolated perfused rat livers: the role of lipid peroxidation,” Toxicology, vol. 66, no. 1, pp. 63–74, 1991. View at Publisher · View at Google Scholar · View at Scopus
  48. N. H. Stacey and H. Kappus, “Comparison of methods of assessment of metal-induced lipid peroxidation in isolated rat hepatocytes,” Journal of Toxicology and Environmental Health, vol. 9, no. 2, pp. 277–285, 1982. View at Google Scholar · View at Scopus
  49. L. A. Garcia, S. C. Dejong, S. M. Martin, R. S. Smith, G. R. Buettner, and R. E. Kerber, “Magnesium reduces free radicals in an in vivo coronary occlusion- reperfusion model,” Journal of the American College of Cardiology, vol. 32, no. 2, pp. 536–539, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. I. T. Mak, A. M. Komarov, J. H. Kramer, and W. B. Weglicki, “Protective mechanisms of Mg-gluconate against oxidative endothelial cytotoxicity,” Cellular and Molecular Biology, vol. 46, no. 8, pp. 1337–1344, 2000. View at Google Scholar · View at Scopus
  51. S. B. Murthi, R. M. Wise, W. B. Weglicki, A. M. Komarov, and J. H. Kramer, “Mg-gluconate provides superior protection against postischemic dysfunction and oxidative injury compared to Mg-sulfate,” Molecular and Cellular Biochemistry, vol. 245, no. 1-2, pp. 141–148, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. B. Matkovics, I. Kiss, and S. A. Kiss, “The activation by magnesium treatment of anti-oxidants eliminating the oxygen free radicals in drosophila melanogaster in vivo,” Magnesium Research, vol. 10, no. 1, pp. 33–38, 1997. View at Google Scholar · View at Scopus
  53. P. J. Romero, “Synergistic activation of the human red cell calcium ATPase by magnesium and vanadate,” Biochimica et Biophysica Acta, vol. 1143, no. 1, pp. 45–50, 1993. View at Publisher · View at Google Scholar · View at Scopus
  54. P. J. Romero and A. F. Rega, “Effects of magnesium plus vanadate on partial reactions of the Ca2+-ATPase from human red cell membranes,” Biochimica et Biophysica Acta, vol. 1235, no. 1, pp. 155–157, 1995. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Sánchez, M. Torres, M. C. Bermúdez-Peña et al., “Bioavailability, tissue distribution and hypoglycaemic effect of vanadium in magnesium-deficient rats,” Magnesium Research, vol. 24, no. 4, pp. 196–208, 2011. View at Google Scholar