Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2013, Article ID 860959, 8 pages
http://dx.doi.org/10.1155/2013/860959
Review Article

The Triggering Receptor Expressed on Myeloid Cells 2: “TREM-ming” the Inflammatory Component Associated with Alzheimer's Disease

Department of Biological Sciences, Boise State University, Science Building, Room 228, Boise, ID 83725, USA

Received 6 December 2012; Accepted 7 February 2013

Academic Editor: Emilio Luiz Streck

Copyright © 2013 Troy T. Rohn. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Association, “2012 Alzheimer's disease facts and figures,” Alzheimer's & Dementia, vol. 8, no. 2, pp. 131–168, 2012. View at Publisher · View at Google Scholar
  2. B. L. Plassman, K. M. Langa, G. G. Fisher et al., “Prevalence of dementia in the United States: the aging, demographics, and memory study,” Neuroepidemiology, vol. 29, no. 1-2, pp. 125–132, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Alves, A. S. Correia, R. Miguel, P. Alegria, and P. Bugalho, “Alzheimer's disease: a clinical practice-oriented review,” Frontiers in Neurology, vol. 3, p. 63, 2012. View at Google Scholar
  4. T. E. Golde, D. Dickson, and M. Hutton, “Filling the gaps in the Aβ cascade hypothesis of Alzheimer's disease,” Current Alzheimer Research, vol. 3, no. 5, pp. 421–430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Hardy and D. J. Selkoe, “The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics,” Science, vol. 297, no. 5580, pp. 353–356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. T. Ferreira and W. L. Klein, “The Abeta oligomer hypothesis for synapse failure and memory loss in Alzheimer's disease,” Neurobiology of Learning and Memory, vol. 96, no. 4, pp. 529–543, 2011. View at Publisher · View at Google Scholar
  7. C. A. McLean, R. A. Cherny, F. W. Fraser et al., “Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease,” Annals of Neurology, vol. 46, no. 6, pp. 860–866, 1999. View at Publisher · View at Google Scholar
  8. K. Broersen, F. Rousseau, and J. Schymkowitz, “The culprit behind amyloid beta peptide related neurotoxicity in Alzheimer's disease: oligomer size or conformation?” Alzheimer's Research & Therapy, vol. 2, no. 4, p. 12, 2010. View at Publisher · View at Google Scholar
  9. P. N. Lacor, M. C. Buniel, L. Chang et al., “Synaptic targeting by Alzheimer's-related amyloid β oligomers,” Journal of Neuroscience, vol. 24, no. 45, pp. 10191–10200, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. M. P. Lambert, A. K. Barlow, B. A. Chromy et al., “Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 6448–6453, 1998. View at Google Scholar · View at Scopus
  11. D. D. Christensen, “Alzheimer's disease: progress in the development of anti-amyloid disease-modifying therapies,” CNS Spectrums, vol. 12, no. 2, pp. 113–123, 2007. View at Google Scholar · View at Scopus
  12. A. F. Teich and O. Arancio, “Is the amyloid hypothesis of Alzheimer's disease therapeutically relevant?” Biochemical Journal, vol. 446, no. 2, pp. 165–177, 2012. View at Publisher · View at Google Scholar
  13. A. Extance, “Alzheimer's failure raises questions about disease-modifying strategies,” Nature Reviews Drug Discovery, vol. 9, no. 10, pp. 749–750, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. T. Bramblett, M. Goedert, R. Jakes, S. E. Merrick, J. Q. Trojanowski, and V. M. Y. Lee -, “Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding,” Neuron, vol. 10, no. 6, pp. 1089–1099, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Q. Trojanowski and V. M. Y. Lee, “‘Fatal Attractions’ of proteins: a comprehensive hypothetical mechanism underlying Alzheimer's disease and other neurodegenerative disorders,” Annals of the New York Academy of Sciences, vol. 924, pp. 62–67, 2000. View at Google Scholar · View at Scopus
  16. A. D. C. Alonso, T. Zaidi, M. Novak, I. Grundke-Iqbal, and K. Iqbal, “Hyperphosphorylation induces self-assembly of τ into tangles of paired helical filaments/straight filaments,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 12, pp. 6923–6928, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. H. G. Lee, G. Perry, P. I. Moreira et al., “Tau phosphorylation in Alzheimer's disease: pathogen or protector?” Trends in Molecular Medicine, vol. 11, no. 4, pp. 164–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Reitz, “Alzheimer's disease and the amyloid cascade hypothesis: a critical review,” International Journal of Alzheimer's Disease, vol. 2012, Article ID 369808, 11 pages, 2012. View at Publisher · View at Google Scholar
  19. P. D. Coleman and P. J. Yao, “Synaptic slaughter in Alzheimer's disease,” Neurobiology of Aging, vol. 24, no. 8, pp. 1023–1027, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Coleman, H. Federoff, and R. Kurlan, “A focus on the synapse for neuroprotection in Alzheimer disease and other dementias,” Neurology, vol. 63, no. 7, pp. 1155–1162, 2004. View at Google Scholar · View at Scopus
  21. J. H. Su, A. J. Anderson, B. J. Cummings, and C. W. Cotman, “Immunohistochemical evidence for apoptosis in Alzheimer's disease,” NeuroReport, vol. 5, no. 18, pp. 2529–2533, 1994. View at Google Scholar · View at Scopus
  22. C. W. Cotman and A. J. Anderson, “A potential role for apoptosis in neurodegeneration and Alzheimer's disease,” Molecular Neurobiology, vol. 10, no. 1, pp. 19–45, 1995. View at Publisher · View at Google Scholar · View at Scopus
  23. J. H. Su, K. E. Nichol, T. Sitch et al., “DNA damage and activated caspase-3 expression in neurons and astrocytes: evidence for apoptosis in frontotemporal dementia,” Experimental Neurology, vol. 163, no. 1, pp. 9–19, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Stadelmann, T. L. Deckwerth, A. Srinivasan et al., “Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer's disease: evidence for apoptotic cell death,” American Journal of Pathology, vol. 155, no. 5, pp. 1459–1466, 1999. View at Google Scholar · View at Scopus
  25. J. H. Su, M. Zhao, A. J. Anderson, A. Srinivasan, and C. W. Cotman, “Activated caspase-3 expression in Alzheimer's and aged control brain: correlation with Alzheimer pathology,” Brain Research, vol. 898, no. 2, pp. 350–357, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. L. A. Selznick, D. M. Holtzman, B. H. Han et al., “In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 58, no. 9, pp. 1020–1026, 1999. View at Google Scholar · View at Scopus
  27. T. T. Rohn, E. Head, W. H. Nesse, C. W. Cotman, and D. H. Cribbs, “Activation of caspase-8 in the Alzheimer's disease brain,” Neurobiology of Disease, vol. 8, no. 6, pp. 1006–1016, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. T. T. Rohn, R. A. Rissman, M. C. Davis, Y. E. Kim, C. W. Cotman, and E. Head, “Caspase-9 activation and caspase cleavage of tau in the Alzheimer's disease brain,” Neurobiology of Disease, vol. 11, no. 2, pp. 341–354, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. A. LeBlanc, H. Liu, C. Goodyer, C. Bergeron, and J. Hammond, “Caspase-6 role in apoptosis of human neurons, amyloidogenesis, and Alzheimer's disease,” Journal of Biological Chemistry, vol. 274, no. 33, pp. 23426–23436, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Guo, S. Albrecht, M. Bourdeau, T. Petzke, C. Bergeron, and A. C. LeBlanc, “Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer's disease,” American Journal of Pathology, vol. 165, no. 2, pp. 523–531, 2004. View at Google Scholar · View at Scopus
  31. T. C. Gamblin, F. Chen, A. Zambrano et al., “Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 17, pp. 10032–10037, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. R. A. Rissman, W. W. Poon, M. Blurton-Jones et al., “Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology,” Journal of Clinical Investigation, vol. 114, no. 1, pp. 121–130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. F. G. Gervais, D. Xu, G. S. Robertson et al., “Involvement of caspases in proteolytic cleavage of Alzheimer's amyloid-β precursor protein and amyloidogenic Aβ peptide formation,” Cell, vol. 97, no. 3, pp. 395–406, 1999. View at Google Scholar · View at Scopus
  34. T. T. Rohn, E. Wirawan, R. J. Brown, J. R. Harris, E. Masliah, and P. Vandenabeele, “Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer's disease brain,” Neurobiology of Disease, vol. 43, no. 1, pp. 68–78, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. P. E. Mouser, E. Head, K. H. Ha, and T. T. Rohn, “Caspase-mediated cleavage of glial fibrillary acidic protein within degenerating astrocytes of the Alzheimer's disease brain,” American Journal of Pathology, vol. 168, no. 3, pp. 936–946, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. T. L. Spires-Jones, A. De Calignon, T. Matsui et al., “In vivo imaging reveals dissociation between caspase activation and acute neuronal death in tangle-bearing neurons,” Journal of Neuroscience, vol. 28, no. 4, pp. 862–867, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Hensley, J. M. Carney, M. P. Mattson et al., “A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 8, pp. 3270–3274, 1994. View at Google Scholar · View at Scopus
  38. S. Varadarajan, S. Yatin, M. Aksenova, and D. A. Butterfield, “Review: Alzheimer's amyloid β-peptide-associated free radical oxidative stress and neurotoxicity,” Journal of Structural Biology, vol. 130, no. 2-3, pp. 184–208, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. D. A. Butterfield, “Amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer's disease brain. A review,” Free Radical Research, vol. 36, no. 12, pp. 1307–1313, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. M. G. Bartley, K. Marquardt, D. Kirchhof, H. M. Wilkins, D. Patterson, and D. A. Linseman, “Overexpression of amyloid-beta protein precursor induces mitochondrial oxidative stress and activates the intrinsic apoptotic cascade,” Journal of Alzheimer's Disease, vol. 28, no. 4, pp. 855–868, 2012. View at Google Scholar
  41. Z. Cai, B. Zhao, and A. Ratka, “Oxidative stress and beta-amyloid protein in Alzheimer's disease,” NeuroMolecular Medicine, vol. 13, no. 4, pp. 223–250, 2011. View at Publisher · View at Google Scholar
  42. A. Gómez-Ramos, J. Díaz-Nido, M. A. Smith, G. Perry, and J. Avila, “Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells,” Journal of Neuroscience Research, vol. 71, no. 6, pp. 863–870, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Takeda, M. A. Smith, J. Avilá et al., “In Alzheimer's disease, heme oxygenase is coincident with Alz50, an epitope of τ induced by 4-hydroxy-2-nonenal modification,” Journal of Neurochemistry, vol. 75, no. 3, pp. 1234–1241, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Y. Calingasan, K. Uchida, and G. E. Gibson, “Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer's disease,” Journal of Neurochemistry, vol. 72, no. 2, pp. 751–756, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Pérez, R. Cuadros, M. A. Smith, G. Perry, and J. Avila, “Phosphorylated, but not native, tau protein assembles following reaction with the lipid peroxidation product, 4-hydroxy-2-nonenal,” FEBS Letters, vol. 486, no. 3, pp. 270–274, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. X. Zhu, C. A. Rottkamp, H. Boux, A. Takeda, G. Perry, and M. A. Smith, “Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 59, no. 10, pp. 880–888, 2000. View at Google Scholar · View at Scopus
  47. X. Zhu, R. J. Castellani, A. Takeda et al., “Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the “two hit” hypothesis,” Mechanisms of Ageing and Development, vol. 123, no. 1, pp. 39–46, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. L. F. Lue, L. Brachova, W. H. Civin, and J. Rogers, “Inflammation, Aβ deposition, and neurofibrillary tangle formation as correlates of Alzheimer's disease neurodegeneration,” Journal of Neuropathology and Experimental Neurology, vol. 55, no. 10, pp. 1083–1088, 1996. View at Google Scholar · View at Scopus
  49. J. Rogers, S. Webster, L. F. Lue et al., “Inflammation and Alzheimer's disease pathogenesis,” Neurobiology of Aging, vol. 17, no. 5, pp. 681–686, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. P. L. McGeer, S. Itagaki, H. Tago, and E. G. McGeer, “Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR,” Neuroscience Letters, vol. 79, no. 1-2, pp. 195–200, 1987. View at Google Scholar · View at Scopus
  51. C. E. Shepherd, E. Thiel, H. McCann, A. J. Harding, and G. M. Halliday, “Cortical inflammation in Alzheimer disease but not dementia with Lewy bodies,” Archives of Neurology, vol. 57, no. 6, pp. 817–822, 2000. View at Google Scholar · View at Scopus
  52. J. Tan, T. Town, D. Paris et al., “Microglial activation resulting from CD40-CD40l interaction after β- amyloid stimulation,” Science, vol. 286, no. 5448, pp. 2352–2355, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Johnstone, A. J. H. Gearing, and K. M. Miller, “A central role for astrocytes in the inflammatory response to β- amyloid; chemokines, cytokines and reactive oxygen species are produced,” Journal of Neuroimmunology, vol. 93, no. 1-2, pp. 182–193, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. J. C. S. Breitner, “Inflammatory processes and antiinflammatory drugs in Alzheimer's disease: a current appraisal,” Neurobiology of Aging, vol. 17, no. 5, pp. 789–794, 1996. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Rogers, J. Luber-Narod, S. D. Styren, and W. H. Civin, “Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer's disease,” Neurobiology of Aging, vol. 9, no. 4, pp. 339–349, 1988. View at Google Scholar · View at Scopus
  56. T. Wyss-Coray and J. Rogers, “Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 1, p. a006346, 2012. View at Google Scholar
  57. T. Wyss-Coray, “Inflammation in Alzheimer disease: driving force, bystander or beneficial response?” Nature Medicine, vol. 12, no. 9, pp. 1005–1015, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Itagaki, P. L. McGeer, H. Akiyama, S. Zhu, and D. Selkoe, “Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease,” Journal of Neuroimmunology, vol. 24, no. 3, pp. 173–182, 1989. View at Google Scholar · View at Scopus
  59. Q. Wu, C. Combs, S. B. Cannady, D. S. Geldmacher, and K. Herrup, “Beta-amyloid activated microglia induce cell cycling and cell death in cultured cortical neurons,” Neurobiology of Aging, vol. 21, no. 6, pp. 797–806, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Meda, P. Baron, E. Prat et al., “Proinflammatory profile of cytokine production by human monocytes and murine microglia stimulated with β-amyloid[25-35],” Journal of Neuroimmunology, vol. 93, no. 1-2, pp. 45–52, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Y. D. Lee and G. E. Landreth, “The role of microglia in amyloid clearance from the AD brain,” Journal of Neural Transmission, vol. 117, no. 8, pp. 949–960, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Colonna, “Trems in the immune system and beyond,” Nature Reviews Immunology, vol. 3, no. 6, pp. 445–453, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Bouchon, J. Dietrich, and M. Colonna, “Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes,” Journal of Immunology, vol. 164, no. 10, pp. 4991–4995, 2000. View at Google Scholar · View at Scopus
  64. K. Takahashi, C. D. P. Rochford, and H. Neumann, “Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2,” Journal of Experimental Medicine, vol. 201, no. 4, pp. 647–657, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Paloneva, M. Kestilä, J. Wu et al., “Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts,” Nature Genetics, vol. 25, no. 3, pp. 357–361, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Paloneva, J. Mandelin, A. Kiialainen et al., “DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features,” Journal of Experimental Medicine, vol. 198, no. 4, pp. 669–675, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Piccio, C. Buonsanti, M. Mariani et al., “Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis,” European Journal of Immunology, vol. 37, no. 5, pp. 1290–1301, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Takahashi, M. Prinz, M. Stagi, O. Chechneva, and H. Neumann, “TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis,” PLoS Medicine, vol. 4, no. 4, pp. 675–689, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Frank, G. J. Burbach, M. Bonin et al., “TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice,” Glia, vol. 56, no. 13, pp. 1438–1447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. B. Melchior, A. E. Garcia, B. K. Hsiung et al., “Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer's disease,” ASN Neuro, vol. 2, no. 3, pp. 157–170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. M. E. Tremblay, R. L. Lowery, and A. K. Majewska, “Microglial interactions with synapses are modulated by visual experience,” PLoS Biology, vol. 8, no. 11, Article ID e1000527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Jonsson, H. Stefansson, D. S. Ph et al., “Variant of TREM2 associated with the risk of Alzheimer's disease,” The New England Journal of Medicine, vol. 368, pp. 107–116, 2013. View at Publisher · View at Google Scholar
  73. R. Guerreiro, A. Wojtas, J. Bras et al., “TREM2 variants in Alzheimer's disease,” The New England Journal of Medicine, vol. 368, pp. 117–127, 2013. View at Publisher · View at Google Scholar
  74. M. Eisenstein, “Genetics: finding risk factors,” Nature, vol. 475, no. 7355, pp. S20–S22, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Paloneva, T. Manninen, G. Christman et al., “Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype,” American Journal of Human Genetics, vol. 71, no. 3, pp. 656–662, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. R. J. Guerreiro, E. Lohmann, J. M. Bras et al., “Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement,” Archives of Neurology, pp. 1–7, 2012. View at Publisher · View at Google Scholar