Oxidative Medicine and Cellular Longevity
Volume 2015, Article ID 314560, 14 pages
http://dx.doi.org/10.1155/2015/314560
Review Article
Protective Mechanisms of Flavonoids in Parkinson’s Disease
1Department of Pathology, Faculty of Medicine and Health, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
2Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
Received 22 October 2014; Accepted 29 January 2015
Academic Editor: Claudio Cabello-Verrugio
Copyright © 2015 Kasthuri Bai Magalingam et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Linked References
- O. Corti, C. Hampe, F. Darios, P. Ibanez, M. Ruberg, and A. Brice, “Parkinson's disease: from causes to mechanisms,” Comptes Rendus Biologies, vol. 328, no. 2, pp. 131–142, 2005. View at Publisher · View at Google Scholar · View at Scopus
- S. Shimohama, H. Sawada, Y. Kitamura, and T. Taniguchi, “Disease model: Parkinson's disease,” Trends in Molecular Medicine, vol. 9, no. 8, pp. 360–365, 2003. View at Publisher · View at Google Scholar · View at Scopus
- K. L. Double, “Neuronal vulnerability in Parkinson's disease,” Parkinsonism and Related Disorders, vol. 18, supplement 1, pp. S52–S54, 2012. View at Google Scholar · View at Scopus
- S. Nikam, P. Nikam, S. K. Ahaley, and A. V. Sontakke, “Oxidative stress in Parkinson's disease,” Indian Journal of Clinical Biochemistry, vol. 24, no. 1, pp. 98–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
- D. Blum, S. Torch, N. Lambeng et al., “Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease,” Progress in Neurobiology, vol. 65, no. 2, pp. 135–172, 2001. View at Publisher · View at Google Scholar · View at Scopus
- A. H. V. Schapira, “Etiology of Parkinson's disease,” Neurology, vol. 66, no. 10, supplement 4, pp. S10–S23, 2006. View at Publisher · View at Google Scholar · View at Scopus
- Z. Huang, R. De la Fuente-Fernández, and A. J. Stoessl, “Etiology of Parkinson's disease,” Canadian Journal of Neurological Sciences, vol. 30, no. 1, pp. S10–S18, 2003. View at Publisher · View at Google Scholar · View at Scopus
- A. Hald and J. Lotharius, “Oxidative stress and inflammation in Parkinson's disease: is there a causal link?” Experimental Neurology, vol. 193, no. 2, pp. 279–290, 2005. View at Publisher · View at Google Scholar · View at Scopus
- R. W. Walker, A. Hand, C. Jones, B. H. Wood, and W. K. Gray, “The prevalence of Parkinson's disease in a rural area of North-East England,” Parkinsonism and Related Disorders, vol. 16, no. 9, pp. 572–575, 2010. View at Publisher · View at Google Scholar · View at Scopus
- C. Freire and S. Koifman, “Pesticide exposure and Parkinson's disease: epidemiological evidence of association,” NeuroToxicology, vol. 33, no. 5, pp. 947–971, 2012. View at Publisher · View at Google Scholar · View at Scopus
- N. M. Gatto, M. Cockburn, J. Bronstein, A. D. Manthripragada, and B. Ritz, “Well-water consumption and Parkinson's disease in rural California,” Environmental Health Perspectives, vol. 117, no. 12, pp. 1912–1918, 2009. View at Publisher · View at Google Scholar · View at Scopus
- B. C. L. Lai, S. A. Marion, K. Teschke, and J. K. C. Tsui, “Occupational and environmental risk factors for Parkinson's disease,” Parkinsonism and Related Disorders, vol. 8, no. 5, pp. 297–309, 2002. View at Publisher · View at Google Scholar · View at Scopus
- K. M. Prakash and E. K. Tan, “Clinical evidence linking coffee and tea intake with Parkinson's disease,” Basal Ganglia, vol. 1, no. 3, pp. 127–130, 2011. View at Publisher · View at Google Scholar
- D.-P. Hong, A. L. Fink, and V. N. Uversky, “Smoking and Parkinson's disease: does nicotine affect α-synuclein fibrillation?” Biochimica et Biophysica Acta—Proteins and Proteomics, vol. 1794, no. 2, pp. 282–290, 2009. View at Publisher · View at Google Scholar · View at Scopus
- Q. Xu, Y. Park, X. Huang et al., “Physical activities and future risk of Parkinson disease,” Neurology, vol. 75, no. 4, pp. 341–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
- K. M. Gerecke, Y. Jiao, A. Pani, V. Pagala, and R. J. Smeyne, “Exercise protects against MPTP-induced neurotoxicity in mice,” Brain Research, vol. 1341, pp. 72–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
- L. H. Yao, Y. M. Jiang, J. Shi et al., “Flavonoids in food and their health benefits,” Plant Foods for Human Nutrition, vol. 59, no. 3, pp. 113–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
- S. Schmitt-Schillig, S. Schaffer, C. C. Weber, G. P. Eckert, and W. E. Müller, “Flavonoids and the aging brain,” Journal of Physiology and Pharmacology, vol. 56, no. 1, pp. 23–36, 2005. View at Google Scholar · View at Scopus
- A. Ebrahimi and H. Schluesener, “Natural polyphenols against neurodegenerative disorders: potentials and pitfalls,” Ageing Research Reviews, vol. 11, no. 2, pp. 329–345, 2012. View at Publisher · View at Google Scholar · View at Scopus
- K. Ishige, D. Schubert, and Y. Sagara, “Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms,” Free Radical Biology and Medicine, vol. 30, no. 4, pp. 433–446, 2001. View at Publisher · View at Google Scholar · View at Scopus
- P. G. Pietta, “Flavonoids as antioxidants,” Journal of Natural Products, vol. 63, no. 7, pp. 1035–1042, 2000. View at Publisher · View at Google Scholar · View at Scopus
- E. Niki, “Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products?” FEBS Letters, vol. 586, no. 21, pp. 3767–3770, 2012. View at Publisher · View at Google Scholar · View at Scopus
- C. Li and H.-M. Zhou, “The role of manganese superoxide dismutase in inflammation defense,” Enzyme Research, vol. 2011, Article ID 387176, 6 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
- C. Sackesen, H. Ercan, E. Dizdar et al., “A comprehensive evaluation of the enzymatic and nonenzymatic antioxidant systems in childhood asthma,” Journal of Allergy and Clinical Immunology, vol. 122, no. 1, pp. 78–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
- P. Pasupathi, V. Chandrasekar, and U. S. Kumar, “Evaluation of oxidative stress, enzymatic and non-enzymatic antioxidants and metabolic thyroid hormone status in patients with diabetes mellitus,” Diabetes & Metabolic Syndrome: Clinical Research and Reviews, vol. 3, no. 3, pp. 160–165, 2009. View at Publisher · View at Google Scholar · View at Scopus
- G. Harish, C. Venkateshappa, R. B. Mythri et al., “Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: implications for Parkinson's disease,” Bioorganic and Medicinal Chemistry, vol. 18, no. 7, pp. 2631–2638, 2010. View at Publisher · View at Google Scholar · View at Scopus
- M. K. Unnikrishnan, V. Veerapur, Y. Nayak, P. P. Mudgal, and G. Mathew, “Antidiabetic, antihyperlipidemic and antioxidant effects of the flavonoids,” in Polyphenols in Human Health and Disease, vol. 1, chapter 13, pp. 143–161, Elsevier, 2014. View at Publisher · View at Google Scholar
- E. Koutsilieri, C. Scheller, E. Grünblatt, K. Nara, J. Li, and P. Riederer, “Free radicals in Parkinson's disease,” Journal of Neurology, vol. 249, supplement 2, pp. II1–II5, 2002. View at Google Scholar · View at Scopus
- H. Kumar, H.-W. Lim, S. V. More et al., “The role of free radicals in the aging brain and Parkinson's disease: convergence and parallelism,” International Journal of Molecular Sciences, vol. 13, no. 8, pp. 10478–10504, 2012. View at Publisher · View at Google Scholar · View at Scopus
- J. D. Adams Jr. and I. N. Odunze, “Oxygen free radicals and Parkinson's disease,” Free Radical Biology and Medicine, vol. 10, no. 2, pp. 161–169, 1991. View at Publisher · View at Google Scholar · View at Scopus
- K. B. Magalingam, A. Radhakrishnan, and N. Haleagrahara, “Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity,” International Journal of Molecular Medicine, vol. 32, no. 1, pp. 235–240, 2013. View at Publisher · View at Google Scholar · View at Scopus
- R. A. Floyd and J. M. Carney, “Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress,” Annals of Neurology, vol. 32, pp. S22–S27, 1992. View at Publisher · View at Google Scholar · View at Scopus
- Y. Sun, “Free radicals, antioxidant enzymes, and carcinogenesis,” Free Radical Biology and Medicine, vol. 8, no. 6, pp. 583–599, 1990. View at Publisher · View at Google Scholar · View at Scopus
- K. B. Magalingam, A. Radhakrishnan, and N. Haleagrahara, “Protective effects of flavonol isoquercitrin, against 6-hydroxydopamine (6-OHDA)—induced toxicity in PC12 cells,” BMC Research Notes, vol. 7, no. 1, article 49, 2014. View at Publisher · View at Google Scholar · View at Scopus
- J. Yang, J. Guo, and J. Yuan, “In vitro antioxidant properties of rutin,” LWT—Food Science and Technology, vol. 41, no. 6, pp. 1060–1066, 2008. View at Publisher · View at Google Scholar · View at Scopus
- K. Gopinath, D. Prakash, and G. Sudhandiran, “Neuroprotective effect of naringin, a dietary flavonoid against 3-Nitropropionic acid-induced neuronal apoptosis,” Neurochemistry International, vol. 59, no. 7, pp. 1066–1073, 2011. View at Publisher · View at Google Scholar · View at Scopus
- Y. Qian, T. Guan, M. Huang et al., “Neuroprotection by the soy isoflavone, genistein, via inhibition of mitochondria-dependent apoptosis pathways and reactive oxygen induced-NF-κB activation in a cerebral ischemia mouse model,” Neurochemistry International, vol. 60, no. 8, pp. 759–767, 2012. View at Publisher · View at Google Scholar · View at Scopus
- A. Kumar, A. Prakash, and S. Dogra, “Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by d-galactose in mice,” Food and Chemical Toxicology, vol. 48, no. 2, pp. 626–632, 2010. View at Publisher · View at Google Scholar · View at Scopus
- S. K. Ha, P. Lee, J. A. Park et al., “Apigenin inhibits the production of NO and PGE2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model,” Neurochemistry International, vol. 52, no. 4-5, pp. 878–886, 2008. View at Publisher · View at Google Scholar · View at Scopus
- H.-Q. Chen, Z.-Y. Jin, X.-J. Wang, X.-M. Xu, L. Deng, and J.-W. Zhao, “Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation,” Neuroscience Letters, vol. 448, no. 2, pp. 175–179, 2008. View at Publisher · View at Google Scholar · View at Scopus
- G. Filomeni, I. Graziani, D. de Zio et al., “Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson's disease,” Neurobiology of Aging, vol. 33, no. 4, pp. 767–785, 2012. View at Publisher · View at Google Scholar · View at Scopus
- K. Zhang, Z. Ma, J. Wang, A. Xie, and J. Xie, “Myricetin attenuated MPP+-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells,” Neuropharmacology, vol. 61, no. 1-2, pp. 329–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
- S. S. Karuppagounder, S. K. Madathil, M. Pandey, R. Haobam, U. Rajamma, and K. P. Mohanakumar, “Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson's disease in rats,” Neuroscience, vol. 236, pp. 136–148, 2013. View at Publisher · View at Google Scholar · View at Scopus
- M. D. A. Teixeira, C. M. Souza, A. P. F. Menezes et al., “Catechin attenuates behavioral neurotoxicity induced by 6-OHDA in rats,” Pharmacology Biochemistry and Behavior, vol. 110, pp. 1–7, 2013. View at Publisher · View at Google Scholar · View at Scopus
- O. Weinreb, T. Amit, and M. B. H. Youdim, “A novel approach of proteomics and transcriptomics to study the mechanism of action of the antioxidant–iron chelator green tea polyphenol (-)-epigallocatechin-3-gallate,” Free Radical Biology and Medicine, vol. 43, no. 4, pp. 546–556, 2007. View at Publisher · View at Google Scholar · View at Scopus
- M. S. Antunes, A. T. R. Goes, S. P. Boeira, M. Prigol, and C. R. Jesse, “Protective effect of hesperidin in a model of Parkinson's disease induced by 6-hydroxydopamine in aged mice,” Nutrition, vol. 30, no. 11-12, pp. 1415–1422, 2014. View at Publisher · View at Google Scholar
- L. T. Zheng, J. Ock, B.-M. Kwon, and K. Suk, “Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity,” International Immunopharmacology, vol. 8, no. 3, pp. 484–494, 2008. View at Publisher · View at Google Scholar · View at Scopus
- H. Lou, X. Jing, X. Wei, H. Shi, D. Ren, and X. Zhang, “Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway,” Neuropharmacology, vol. 79, pp. 380–388, 2014. View at Publisher · View at Google Scholar · View at Scopus
- A. Anandhan, K. Tamilselvam, T. Radhiga, S. Rao, M. M. Essa, and T. Manivasagam, “Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson's disease,” Brain Research, vol. 1433, pp. 104–113, 2012. View at Publisher · View at Google Scholar · View at Scopus
- K. E. Strathearn, G. G. Yousef, M. H. Grace et al., “Neuroprotective effects of anthocyanin-and proanthocyanidin-rich extractsin cellular models of Parkinson's disease,” Brain Research, vol. 1555, pp. 60–77, 2014. View at Publisher · View at Google Scholar
- S. Y. Wang and J. R. Ballington, “Free radical scavenging capacity and antioxidant enzyme activity in deerberry (Vaccinium stamineum L.),” LWT—Food Science and Technology, vol. 40, no. 8, pp. 1352–1361, 2007. View at Publisher · View at Google Scholar · View at Scopus
- H. Nagata, S. Takekoshi, T. Takagi, T. Honma, and K. Watanabe, “Antioxidative action of flavonoids, quercetin and catechin, mediated by the activation of glutathione peroxidase,” Tokai Journal of Experimental and Clinical Medicine, vol. 24, no. 1, pp. 1–11, 1999. View at Google Scholar · View at Scopus
- J. Zhu, X. Zhang, D. Li, and J. Jin, “Probing the binding of flavonoids to catalase by molecular spectroscopy,” Journal of Molecular Structure, vol. 843, no. 1–3, pp. 38–44, 2007. View at Publisher · View at Google Scholar · View at Scopus
- N. Doronicheva, H. Yasui, and H. Sakurai, “Chemical structure-dependent differential effects of flavonoids on the catalase activity as evaluated by a chemiluminescent method,” Biological and Pharmaceutical Bulletin, vol. 30, no. 2, pp. 213–217, 2007. View at Publisher · View at Google Scholar · View at Scopus
- E. Cadenas and K. J. A. Davies, “Mitochondrial free radical generation, oxidative stress, and aging,” Free Radical Biology & Medicine, vol. 29, no. 3-4, pp. 222–230, 2000. View at Publisher · View at Google Scholar · View at Scopus
- R. P. Singh, S. Sharad, and S. Kapur, “MPTP as a mitochondrial neurotoxic model of parkinson’s disease. free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants,” Journal, Indian Academy of Clinical Medicine, vol. 5, no. 3, pp. 218–225, 2004. View at Google Scholar
- S. Przedborski, K. Tieu, C. Perier, and M. Vila, “MPTP as a mitochondrial neurotoxic model of Parkinson's disease,” Journal of Bioenergetics and Biomembranes, vol. 36, no. 4, pp. 375–379, 2004. View at Publisher · View at Google Scholar · View at Scopus
- D. A. Di Monte, “The environment and Parkinson's disease: is the nigrostriatal system preferentially targeted by neurotoxins?” Lancet Neurology, vol. 2, no. 9, pp. 531–538, 2003. View at Publisher · View at Google Scholar · View at Scopus
- M. Marella, B. B. Seo, T. Yagi, and A. Matsuno-Yagi, “Parkinson's disease and mitochondrial complex I: a perspective on the Ndi1 therapy,” Journal of Bioenergetics and Biomembranes, vol. 41, no. 6, pp. 493–497, 2009. View at Publisher · View at Google Scholar · View at Scopus
- W. A. Pryor and N. A. Porter, “Suggested mechanisms for the production of 4-hydroxy-2-nonenal from the autoxidation of polyunsaturated fatty acids,” Free Radical Biology and Medicine, vol. 8, no. 6, pp. 541–543, 1990. View at Publisher · View at Google Scholar · View at Scopus
- N. J. Pillon, M. L. Croze, R. E. Vella, L. Soulère, M. Lagarde, and C. O. Soulage, “The lipid peroxidation by-product 4-hydroxy-2-nonenal (4-HNE) induces insulin resistance in skeletal muscle through both carbonyl and oxidative stress,” Endocrinology, vol. 153, no. 5, pp. 2099–2111, 2012. View at Publisher · View at Google Scholar · View at Scopus
- I. Rahman, A. A. M. van Schadewijk, A. J. L. Crowther et al., “4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease,” The American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 4, pp. 490–495, 2002. View at Publisher · View at Google Scholar · View at Scopus
- T. Näsström, T. Wahlberg, M. Karlsson et al., “The lipid peroxidation metabolite 4-oxo-2-nonenal cross-links α-synuclein causing rapid formation of stable oligomers,” Biochemical and Biophysical Research Communications, vol. 378, no. 4, pp. 872–876, 2009. View at Publisher · View at Google Scholar · View at Scopus
- T. Näsström, T. Fagerqvist, M. Barbu et al., “The lipid peroxidation products 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote the formation of α-synuclein oligomers with distinct biochemical, morphological, and functional properties,” Free Radical Biology and Medicine, vol. 50, no. 3, pp. 428–437, 2011. View at Publisher · View at Google Scholar · View at Scopus
- W. S. Davidson, A. Jonas, D. F. Clayton, and J. M. George, “Stabilization of α-synuclein secondary structure upon binding to synthetic membranes,” Journal of Biological Chemistry, vol. 273, no. 16, pp. 9443–9449, 1998. View at Publisher · View at Google Scholar · View at Scopus
- S. Liu, I. Ninan, I. Antonova et al., “α-synuclein produces a long-lasting increase in neurotransmitter release,” The EMBO Journal, vol. 23, no. 22, pp. 4506–4516, 2004. View at Publisher · View at Google Scholar · View at Scopus
- D. F. Clayton and J. M. George, “Synucleins in synaptic plasticity and neurodegenerative disorders,” Journal of Neuroscience Research, vol. 58, no. 1, pp. 120–129, 1999. View at Publisher · View at Google Scholar
- W. Xiang, J. C. M. Schlachetzki, S. Helling et al., “Oxidative stress-induced posttranslational modifications of alpha-synuclein: specific modification of alpha-synuclein by 4-hydroxy-2-nonenal increases dopaminergic toxicity,” Molecular and Cellular Neuroscience, vol. 54, pp. 71–83, 2013. View at Publisher · View at Google Scholar · View at Scopus
- C. W. Olanow and P. Brundin, “Parkinson's disease and alpha synuclein: is Parkinson's disease a prion-like disorder?” Movement Disorders, vol. 28, no. 1, pp. 31–40, 2013. View at Publisher · View at Google Scholar · View at Scopus
- G. Schinella, S. Mosca, E. Cienfuegos-Jovellanos et al., “Antioxidant properties of polyphenol-rich cocoa products industrially processed,” Food Research International, vol. 43, no. 6, pp. 1614–1623, 2010. View at Publisher · View at Google Scholar · View at Scopus
- A. Othman, A. Ismail, N. Abdul Ghani, and I. Adenan, “Antioxidant capacity and phenolic content of cocoa beans,” Food Chemistry, vol. 100, no. 4, pp. 1523–1530, 2007. View at Publisher · View at Google Scholar · View at Scopus
- R. M. Lamuela-Raventós, A. I. Romero-Pérez, C. Andrés-Lacueva, and A. Tornero, “Review: health effects of cocoa flavonoids,” Food Science and Technology International, vol. 11, no. 3, pp. 159–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
- T. M. Dawson and V. L. Dawson, “Neuroprotective and neurorestorative strategies for Parkinson's disease,” Nature Neuroscience, vol. 5, pp. S1058–S1061, 2002. View at Publisher · View at Google Scholar · View at Scopus
- B. Frei and J. V. Higdon, “Antioxidant activity of tea polyphenols in vivo: evidence from animal studies,” Journal of Nutrition, vol. 133, no. 10, pp. S3275–S3284, 2003. View at Google Scholar · View at Scopus
- R. K. Chaturvedi, S. Shukla, K. Seth et al., “Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson's disease,” Neurobiology of Disease, vol. 22, no. 2, pp. 421–434, 2006. View at Publisher · View at Google Scholar · View at Scopus
- C. Chen, R. Yu, E. D. Owuor, and A.-N. Tony Kong, “Activation of antioxidant-response element (ARE), mitogen-activated protein kinases (MAPKs) and caspases by major green tea polyphenol components during cell survival and death,” Archives of Pharmacal Research, vol. 23, no. 6, pp. 605–612, 2000. View at Publisher · View at Google Scholar · View at Scopus
- K. Imamura, N. Hishikawa, M. Sawada, T. Nagatsu, M. Yoshida, and Y. Hashizume, “Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains,” Acta Neuropathologica, vol. 106, no. 6, pp. 518–526, 2003. View at Publisher · View at Google Scholar · View at Scopus
- T. G. Beach, L. I. Sue, D. G. Walker et al., “Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits,” Acta Neuropathologica, vol. 114, no. 4, pp. 419–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
- M. Sawada, K. Imamura, and T. Nagatsu, “Role of cytokines in inflammatory process in Parkinson's disease,” Journal of Neural Transmission, no. 70, pp. 373–381, 2006. View at Google Scholar · View at Scopus
- R. B. Banati, S. E. Daniel, and S. B. Blunt, “Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson's disease,” Movement Disorders, vol. 13, no. 2, pp. 221–227, 1998. View at Publisher · View at Google Scholar · View at Scopus
- C. S. Jack, N. Arbour, J. Manusow et al., “TLR signaling tailors innate immune responses in human microglia and astrocytes,” The Journal of Immunology, vol. 175, no. 7, pp. 4320–4330, 2005. View at Publisher · View at Google Scholar · View at Scopus
- R. Largo, M. A. Alvarez-Soria, I. Díez-Ortego et al., “Glucosamine inhibits IL-1β-induced NFκB activation in human osteoarthritic chondrocytes,” Osteoarthritis and Cartilage, vol. 11, no. 4, pp. 290–298, 2003. View at Publisher · View at Google Scholar · View at Scopus
- S. S. Raza, M. M. Khan, A. Ahmad et al., “Neuroprotective effect of naringenin is mediated through suppression of NF-κB signaling pathway in experimental stroke,” Neuroscience, vol. 230, pp. 157–171, 2013. View at Publisher · View at Google Scholar · View at Scopus
- I. Kurkowska-Jastrzȩbska, M. Babiuch, I. Joniec, A. Przybyłkowski, A. Członkowski, and A. Członkowska, “Indomethacin protects against neurodegeneration caused by MPTP intoxication in mice,” International Immunopharmacology, vol. 2, no. 8, pp. 1213–1218, 2002. View at Publisher · View at Google Scholar · View at Scopus
- V. Di Matteo, M. Pierucci, G. Di Giovanni et al., “Aspirin protects striatal dopaminergic neurons from neurotoxin-induced degeneration: an in vivo microdialysis study,” Brain Research, vol. 1095, no. 1, pp. 167–177, 2006. View at Publisher · View at Google Scholar · View at Scopus
- L. C. Johnston, X. Su, K. Maguire-Zeiss et al., “Human interleukin-10 gene transfer is protective in a rat model of parkinson's disease,” Molecular Therapy, vol. 16, no. 8, pp. 1392–1399, 2008. View at Publisher · View at Google Scholar · View at Scopus
- Y. Du, Z. Ma, S. Lin et al., “Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 25, pp. 14669–14674, 2001. View at Publisher · View at Google Scholar · View at Scopus
- J.-H. Yoon and S. J. Baek, “Molecular targets of dietary polyphenols with anti-inflammatory properties,” Yonsei Medical Journal, vol. 46, no. 5, pp. 585–596, 2005. View at Publisher · View at Google Scholar · View at Scopus
- Z. Jia, P. V. A. Babu, H. Si et al., “Genistein inhibits TNF-α-induced endothelial inflammation through the protein kinase pathway A and improves vascular inflammation in C57BL/6 mice,” International Journal of Cardiology, vol. 168, no. 3, pp. 2637–2645, 2013. View at Publisher · View at Google Scholar · View at Scopus
- A. A. Qureshi, X. Q. Guan, J. C. Reis et al., “Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor,” Lipids in Health and Disease, vol. 11, article 76, 2012. View at Publisher · View at Google Scholar · View at Scopus
- X. Chen, X. Yang, T. Liu et al., “Kaempferol regulates MAPKs and NF-κB signaling pathways to attenuate LPS-induced acute lung injury in mice,” International Immunopharmacology, vol. 14, no. 2, pp. 209–216, 2012. View at Publisher · View at Google Scholar · View at Scopus
- X. Zhu, K. Zeng, Y. Qiu, F. Yan, and C. Lin, “Therapeutic effect of emodin on collagen-induced arthritis in mice,” Inflammation, vol. 36, no. 6, pp. 1253–1259, 2013. View at Publisher · View at Google Scholar · View at Scopus
- J. S. Choi, M. Nurul Islam, M. Yousof Ali, E. J. Kim, Y. M. Kim, and H. A. Jung, “Effects of C-glycosylation on anti-diabetic, anti-Alzheimer's disease and anti-inflammatory potential of apigenin,” Food and Chemical Toxicology, vol. 64, pp. 27–33, 2014. View at Publisher · View at Google Scholar · View at Scopus
- A. Burlacu, “Regulation of apoptosis by Bcl-2 family proteins,” Journal of Cellular and Molecular Medicine, vol. 7, no. 3, pp. 249–257, 2003. View at Publisher · View at Google Scholar · View at Scopus
- T. T. Renault, O. Teijido, B. Antonsson, L. M. Dejean, and S. Manon, “Regulation of Bax mitochondrial localization by Bcl-2 and Bcl-x L: keep your friends close but your enemies closer,” The International Journal of Biochemistry & Cell Biology, vol. 45, no. 1, pp. 64–67, 2013. View at Publisher · View at Google Scholar · View at Scopus
- S. J. Korsmeyer, J. R. Shutter, D. J. Veis, D. E. Merry, and Z. N. Oltvai, “Bcl-2/Bax: a rheostat that regulates an anti-oxidant pathway and cell death,” Seminars in Cancer Biology, vol. 4, no. 6, pp. 327–332, 1993. View at Google Scholar · View at Scopus
- Q.-G. Gao, J.-X. Xie, M.-S. Wong, and W.-F. Chen, “IGF-I receptor signaling pathway is involved in the neuroprotective effect of genistein in the neuroblastoma SK-N-SH cells,” European Journal of Pharmacology, vol. 677, no. 1–3, pp. 39–46, 2012. View at Publisher · View at Google Scholar · View at Scopus
- L. Chang and M. Karin, “Mammalian MAP kinase signalling cascades,” Nature, vol. 410, no. 6824, pp. 37–40, 2001. View at Publisher · View at Google Scholar · View at Scopus
- B. Dérijard, J. Raingeaud, T. Barrett et al., “Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms,” Science, vol. 267, no. 5198, pp. 682–685, 1995. View at Publisher · View at Google Scholar · View at Scopus
- A. J. Whitmarsh and R. J. Davis, “Role of mitogen-activated protein kinase kinase 4 in cancer,” Oncogene, vol. 26, no. 22, pp. 3172–3184, 2007. View at Publisher · View at Google Scholar · View at Scopus
- U. Bhattacharya, B. Halder, S. Mukhopadhyay, and A. K. Giri, “Role of oxidation-triggered activation of JNK and p38 MAPK in black tea polyphenols induced apoptotic death of A375 cells,” Cancer Science, vol. 100, no. 10, pp. 1971–1978, 2009. View at Publisher · View at Google Scholar · View at Scopus
- E. S. Cho, Y. J. Jang, N. J. Kang et al., “Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity,” Free Radical Biology and Medicine, vol. 46, no. 10, pp. 1319–1327, 2009. View at Publisher · View at Google Scholar · View at Scopus
- G. Lenaz, “Role of mitochondria in oxidative stress and ageing,” Biochimica et Biophysica Acta, vol. 1366, no. 1-2, pp. 53–67, 1998. View at Publisher · View at Google Scholar · View at Scopus
- G. van Loo, X. Saelens, M. van Gurp, M. MacFarlane, S. J. Martin, and P. Vandenabeele, “The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet,” Cell Death and Differentiation, vol. 9, no. 10, pp. 1031–1042, 2002. View at Publisher · View at Google Scholar · View at Scopus
- A. H. V. Schapira, “Mitochondrial dysfunction in Parkinson's disease,” Cell Death and Differentiation, vol. 14, no. 7, pp. 1261–1266, 2007. View at Publisher · View at Google Scholar · View at Scopus
- N. Lev, E. Melamed, and D. Offen, “Apoptosis and Parkinson's disease,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 27, no. 2, pp. 245–250, 2003. View at Publisher · View at Google Scholar · View at Scopus
- A. H. V. Schapira, J. M. Cooper, D. Dexter, P. Jenner, J. B. Clark, and C. D. Marsden, “Mitochondrial complex I deficiency in Parkinson's disease,” The Lancet, vol. 1, no. 8649, p. 1269, 1989. View at Google Scholar · View at Scopus
- K. Block and Y. Gorin, “Aiding and abetting roles of NOX oxidases in cellular transformation,” Nature Reviews Cancer, vol. 12, no. 9, pp. 627–637, 2012. View at Publisher · View at Google Scholar · View at Scopus
- X. Li, P. Fang, J. Mai, E. T. Choi, H. Wang, and X.-F. Yang, “Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers,” Journal of Hematology & Oncology, vol. 6, article 19, 2013. View at Publisher · View at Google Scholar
- A. C. Bulua, A. Simon, R. Maddipati et al., “Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS),” Journal of Experimental Medicine, vol. 208, no. 3, pp. 519–533, 2011. View at Publisher · View at Google Scholar · View at Scopus
- C. Soto, “Unfolding the role of protein misfolding in neurodegenerative diseases,” Nature Reviews Neuroscience, vol. 4, no. 1, pp. 49–60, 2003. View at Publisher · View at Google Scholar · View at Scopus
- R. J. Castellani, R. K. Rolston, and M. A. Smith, “Alzheimer disease,” Disease-a-Month, vol. 56, no. 9, pp. 484–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
- A. Camilleri, C. Zarb, M. Caruana et al., “Mitochondrial membrane permeabilisation by amyloid aggregates and protection by polyphenols,” Biochimica et Biophysica Acta—Biomembranes, vol. 1828, no. 11, pp. 2532–2543, 2013. View at Publisher · View at Google Scholar · View at Scopus
- H. Büeler, “Impaired mitochondrial dynamics and function in the pathogenesis of Parkinson's disease,” Experimental Neurology, vol. 218, no. 2, pp. 235–246, 2009. View at Publisher · View at Google Scholar · View at Scopus
- M. Zhang, S. G. Swarts, L. Yin et al., “Antioxidant properties of quercetin,” Advances in Experimental Medicine and Biology, vol. 701, pp. 283–289, 2011. View at Publisher · View at Google Scholar · View at Scopus
- S. Y. Zheng, Y. Li, D. Jiang, J. Zhao, and J. F. Ge, “Anticancer effect and apoptosis induction by quercetin in the human lung cancer cell line A-549,” Molecular Medicine Reports, vol. 5, no. 3, pp. 822–826, 2012. View at Publisher · View at Google Scholar · View at Scopus
- R. Kleemann, L. Verschuren, M. Morrison et al., “Anti-inflammatory, anti-proliferative and anti-atherosclerotic effects of quercetin in human in vitro and in vivo models,” Atherosclerosis, vol. 218, no. 1, pp. 44–52, 2011. View at Publisher · View at Google Scholar · View at Scopus
- S. Ganesan, A. N. Faris, A. T. Comstock et al., “Quercetin inhibits rhinovirus replication in vitro and in vivo,” Antiviral Research, vol. 94, no. 3, pp. 258–271, 2012. View at Publisher · View at Google Scholar · View at Scopus
- D. Valenti, D. De Rasmo, A. Signorile et al., “Epigallocatechin-3-gallate prevents oxidative phosphorylation deficit and promotes mitochondrial biogenesis in human cells from subjects with Down's syndrome,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1832, no. 4, pp. 542–552, 2013. View at Publisher · View at Google Scholar · View at Scopus
- M. Sonee, T. Sum, C. Wang, and S. K. Mukherjee, “The soy isoflavone, genistein, protects human cortical neuronal cells from oxidative stress,” NeuroToxicology, vol. 25, no. 5, pp. 885–891, 2004. View at Publisher · View at Google Scholar · View at Scopus
- S. L. Vallés, C. Borrás, J. Gambini et al., “Oestradiol or genistein rescues neurons from amyloid beta-induced cell death by inhibiting activation of p38,” Aging Cell, vol. 7, no. 1, pp. 112–118, 2008. View at Publisher · View at Google Scholar · View at Scopus
- G. C. Jagetia and T. K. Reddy, “Modulation of radiation-induced alteration in the antioxidant status of mice by naringin,” Life Sciences, vol. 77, no. 7, pp. 780–794, 2005. View at Publisher · View at Google Scholar · View at Scopus
- S. M. Jeon, S. H. Bok, M. K. Jang et al., “Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits,” Life Sciences, vol. 69, no. 24, pp. 2855–2866, 2001. View at Publisher · View at Google Scholar · View at Scopus
- G. Jung, G. Hennings, M. Pfeifer, and W. G. Bessler, “Interaction of metal-complexing compounds with lymphocytes and lymphoid cell lines,” Molecular Pharmacology, vol. 23, no. 3, pp. 698–702, 1983. View at Google Scholar · View at Scopus
- E. J. Ryu, J. M. Angelastro, and L. A. Greene, “Analysis of gene expression changes in a cellular model of Parkinson disease,” Neurobiology of Disease, vol. 18, no. 1, pp. 54–74, 2005. View at Publisher · View at Google Scholar · View at Scopus
- K. B. Magalingam, A. Radhakrishnan, P. Ramdas, and N. Haleagrahara, “Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson's disease,” Journal of Molecular Neuroscience, vol. 55, no. 3, pp. 609–617, 2015. View at Publisher · View at Google Scholar
- J.-C. Chen, F.-M. Ho, P.-D. L. Chao et al., “Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia,” European Journal of Pharmacology, vol. 521, no. 1-3, pp. 9–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
- Q.-W. Xie, R. Whisnant, and C. Nathan, “Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon γ and bacterial lipopolysaccharide,” Journal of Experimental Medicine, vol. 177, no. 6, pp. 1779–1784, 1993. View at Publisher · View at Google Scholar · View at Scopus
- D. Morse and A. M. K. Choi, “Heme oxygenase-1: the ‘emerging molecule’ has arrived,” American Journal of Respiratory Cell and Molecular Biology, vol. 27, no. 1, pp. 8–16, 2002. View at Publisher · View at Google Scholar · View at Scopus
- L.-X. Liu, W.-F. Chen, J.-X. Xie, and M.-S. Wong, “Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson's disease,” Neuroscience Research, vol. 60, no. 2, pp. 156–161, 2008. View at Publisher · View at Google Scholar · View at Scopus
- A. K. Zimmermann, F. A. Loucks, E. K. Schroeder, R. J. Bouchard, K. L. Tyler, and D. A. Linseman, “Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria,” The Journal of Biological Chemistry, vol. 282, no. 40, pp. 29296–29304, 2007. View at Publisher · View at Google Scholar · View at Scopus
- L. M. Garcia-Segura, P. Cardona-Gomez, F. Naftolin, and J. A. Chowen, “Estradiol upregulates Bcl-2 expression in adult brain neurons,” NeuroReport, vol. 9, no. 4, pp. 593–597, 1998. View at Publisher · View at Google Scholar · View at Scopus
- D. B. Dubal, P. J. Shughrue, M. E. Wilson, I. Merchenthaler, and P. M. Wise, “Estradiol modulates bcl-2 in cerebral ischemia: a potential role for estrogen receptors,” The Journal of Neuroscience, vol. 19, no. 15, pp. 6385–6393, 1999. View at Google Scholar · View at Scopus
- C. A. Singer, K. L. Rogers, and D. M. Dorsa, “Modulation of Bcl-2 expression: a potential component of estrogen protection in NT2 neurons,” NeuroReport, vol. 9, no. 11, pp. 2565–2568, 1998. View at Publisher · View at Google Scholar · View at Scopus
- Y. Levites, T. Amit, M. B. H. Youdim, and S. Mandel, “Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (−)-epigallocatechin 3-gallate neuroprotective action,” The Journal of Biological Chemistry, vol. 277, no. 34, pp. 30574–30580, 2002. View at Publisher · View at Google Scholar · View at Scopus