Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2015, Article ID 392169, 14 pages
http://dx.doi.org/10.1155/2015/392169
Review Article

Resveratrol: A Focus on Several Neurodegenerative Diseases

1Department of Chemical Sciences, University of Messina, V. le Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
2Biochemistry and Clinical Biochemistry Institute, School of Medicine, Catholic University, L. go F. Vito n.1, 00168 Rome, Italy
3C.N.R. Institute of Chemistry of Molecular Recognition, L. go F. Vito n.1, 00168 Rome, Italy

Received 26 September 2014; Revised 19 December 2014; Accepted 26 December 2014

Academic Editor: David Vauzour

Copyright © 2015 Ester Tellone et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Frémont, “Biological effects of resveratrol,” Life Sciences, vol. 66, no. 8, pp. 663–673, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Sparvoli, C. Martin, A. Scienza, G. Gavazzi, and C. Tonelli, “Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape (Vitis vinifera L.),” Plant Molecular Biology, vol. 24, no. 5, pp. 743–755, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Choi, J. K. Lee, S.-Y. Kang et al., “Construction of artificial biosynthetic pathways for resveratrol glucoside derivativesS,” Journal of Microbiology and Biotechnology, vol. 24, no. 5, pp. 614–618, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. Q. Wang, J. Xu, G. E. Rottinghaus et al., “Resveratrol protects against global cerebral ischemic injury in gerbils,” Brain Research, vol. 958, no. 2, pp. 439–447, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Walle, F. Hsieh, M. H. DeLegge, J. E. Oatis Jr., and U. K. Walle, “High absorption but very low bioavailability of oral resveratrol in humans,” Drug Metabolism and Disposition, vol. 32, no. 12, pp. 1377–1382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. H. I. Rocha-González, M. Ambriz-Tututi, and V. Granados-Soto, “Resveratrol: a natural compound with pharmacological potential in neurodegenerative diseases,” CNS Neuroscience and Therapeutics, vol. 14, no. 3, pp. 234–247, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. J. Forman, “Reactive oxygen species and α,β-unsaturated aldehydes as second messengers in signal transduction,” Annals of the New York Academy of Sciences, vol. 1203, pp. 35–44, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. A. C. Andorn, R. S. Britton, and B. R. Bacon, “Evidence that lipid peroxidation and total iron are increased in Alzheimer's brain,” Neurobiology of Aging, vol. 11, pp. 316–320, 1990. View at Google Scholar
  9. A. Granzotto and P. Zatta, “Resveratrol and Alzheimer's disease: message in a bottle on red wine and cognition,” Frontiers in Aging Neuroscience, vol. 6, article 95, 2014. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Boillée, C. Vande Velde, and D. Cleveland, “ALS: a disease of motor neurons and their nonneuronal neighbors,” Neuron, vol. 52, no. 1, pp. 39–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Duce and A. I. Bush, “Biological metals and Alzheimer's disease: implications for therapeutics and diagnostics,” Progress in Neurobiology, vol. 92, no. 1, pp. 1–18, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. B. R. Roberts, T. M. Ryan, A. I. Bush, C. L. Masters, and J. A. Duce, “The role of metallobiology and amyloid-beta peptides in Alzheimer's disease,” Journal of Neurochemistry, vol. 120, no. 1, pp. 149–166, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. R. González-Domínguez, T. García-Barrera, and J. L. Gómez-Ariza, “Characterization of metal profiles in serum during the progression of Alzheimer's disease,” Metallomics, vol. 6, no. 2, pp. 292–300, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. A. R. La Spada, “Finding a sirtuin truth in Huntington's disease,” Nature Medicine, vol. 18, no. 1, pp. 24–26, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Blesa, S. Phani, V. Jackson-Lewis, and S. Przedborski, “Classic and new animal models of Parkinson's disease,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 845618, 10 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. L. I. Bruijn, T. M. Miller, and D. W. Cleveland, “Unraveling the mechanisms involved in motor neuron degeneration in ALS,” Annual Review of Neuroscience, vol. 27, pp. 723–749, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Rosen, T. Siddique, D. Patterson et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, no. 6415, pp. 59–62, 1993. View at Google Scholar
  18. A. Z. Herskovits and L. Guarente, “Sirtuin deacetylases in neurodegenerative diseases of aging,” Cell Research, vol. 23, no. 6, pp. 746–758, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. C. Gutteridge, “Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides,” FEBS Letters, vol. 201, no. 2, pp. 291–295, 1986. View at Publisher · View at Google Scholar · View at Scopus
  20. R. J. Castellani, R. K. Rolston, and M. A. Smith, “Alzheimer disease,” Disease-a-Month, vol. 56, no. 9, pp. 484–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. W. G. Tatton, R. Chalmers-Redman, D. Brown, and N. Tatton, “Apoptosis in Parkinson's disease: signals for neuronal degradation,” Annals of Neurology, vol. 53, supplement 3, pp. S61–S72, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. R. C. S. Seet, C.-Y. J. Lee, E. C. H. Lim et al., “Oxidative damage in Parkinson disease: measurement using accurate biomarkers,” Free Radical Biology and Medicine, vol. 48, no. 4, pp. 560–566, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Gandhi and A. Y. Abramov, “Mechanism of oxidative stress in neurodegeneration,” Oxidative Medicine and Cellular Longevity, vol. 2012, Article ID 428010, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Cavallaro, T. Ainis, C. Bottari, and V. Fimiani, “Effect of resveratrol on some activities of isolated and in whole blood human neutrophils,” Physiological Research, vol. 52, no. 5, pp. 555–562, 2003. View at Google Scholar · View at Scopus
  25. M. A. Hussein, “A convenient mechanism for the free radical scavenging activity of resveratrol,” International Journal of Phytomedicine, vol. 3, no. 4, pp. 459–469, 2011. View at Google Scholar · View at Scopus
  26. C. Iuga, J. R. Alvarez-Idaboy, and N. Russo, “Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetics study,” Journal of Organic Chemistry, vol. 77, no. 8, pp. 3868–3877, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. L. A. Stivala, M. Savio, F. Carafoli et al., “Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol,” The Journal of Biological Chemistry, vol. 276, no. 25, pp. 22586–22594, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Petralia, C. Spatafora, C. Tringali, M. C. Foti, and S. Sortino, “Hydrogen atom abstraction from resveratrol and two lipophilic derivatives by tert-butoxyl radicals. A laser flash photolysis study,” New Journal of Chemistry, vol. 28, no. 12, pp. 1484–1487, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Chao, M. S. Yu, Y. S. Ho, M. Wang, and R. C. C. Chang, “Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity,” Free Radical Biology and Medicine, vol. 45, no. 7, pp. 1019–1026, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Selvaraj, A. Mohan, S. Narayanan, S. Sethuraman, and U. M. Krishnan, “Dose-dependent interaction of trans-resveratrol with biomembranes: effects on antioxidant property,” Journal of Medicinal Chemistry, vol. 56, no. 3, pp. 970–981, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. E. Tellone, M. C. de Rosa, D. Pirolli et al., “Molecular interactions of hemoglobin with resveratrol: potential protective antioxidant role and metabolic adaptations of the erythrocyte,” Biological Chemistry, vol. 395, no. 3, pp. 347–354, 2014. View at Publisher · View at Google Scholar
  32. A. Galtieri, E. Tellone, S. Ficarra et al., “Resveratrol treatment induces redox stress in red blood cells: A possible role of caspase 3 in metabolism and anion transport,” Biological Chemistry, vol. 391, no. 9, pp. 1057–1065, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Pervaiz, “Resveratrol: from grapevines to mammalian biology,” The FASEB Journal, vol. 17, no. 14, pp. 1975–1985, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. E. N. Frankel, A. L. Waterhouse, and J. E. Kinsella, “Inhibition of human LDL oxidation by resveratrol,” The Lancet, vol. 341, no. 8852, pp. 1103–1104, 1993. View at Google Scholar · View at Scopus
  35. G.-C. Yen, P.-D. Duh, and C.-W. Lin, “Effects of resveratrol and 4-hexylresorcinol on hydrogen peroxide-induced oxidative DNA damage in human lymphocytes,” Free Radical Research, vol. 37, no. 5, pp. 509–514, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. C. A. de La Lastra and I. Villegas, “Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications,” Biochemical Society Transactions, vol. 35, no. 5, pp. 1156–1160, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. S.-K. Tsai, L.-M. Hung, Y.-T. Fu et al., “Resveratrol neuroprotective effects during focal cerebral ischemia injury via nitric oxide mechanism in rats,” Journal of Vascular Surgery, vol. 46, no. 2, pp. 346–353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Centeno-Baez, P. Dallaire, and A. Marette, “Resveratrol inhibition of inducible nitric oxide synthase in skeletal muscle involves AMPK but not SIRT1,” The American Journal of Physiology—Endocrinology and Metabolism, vol. 301, no. 5, pp. E922–E930, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. T. C. Huang, K. T. Lu, Y. Y. P. Wo, Y. J. Wu, and Y. L. Yang, “Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation,” PLoS ONE, vol. 6, no. 12, Article ID e29102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Savaskan, G. Olivieri, F. Meier, E. Seifritz, A. Wirz-Justice, and F. Müller-Spahn, “Red wine ingredient resveratrol protects from β-amyloid neurotoxicity,” Gerontology, vol. 49, no. 6, pp. 380–383, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Vingtdeux, U. Dreses-Werringloer, H. Zhao, P. Davies, and P. Marambaud, “Therapeutic potential of resveratrol in Alzheimer's disease,” BMC Neuroscience, vol. 9, supplement 2, article S6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. K. A. Ahmad, M.-V. Clement, and S. Pervaiz, “Pro-oxidant activity of low doses of resveratrol inhibits hydrogen peroxide—induced apoptosis,” Annals of the New York Academy of Sciences, vol. 1010, pp. 365–373, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Ahmad, F. A. Syed, S. Singh, and S. M. Hadi, “Prooxidant activity of resveratrol in the presence of copper ions: mutagenicity in plasmid DNA,” Toxicology Letters, vol. 159, no. 1, pp. 1–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. I. Muqbil, F. W. J. Beck, B. Bao et al., “Old wine in a new bottle: the Warburg effect and anticancer mechanisms of resveratrol,” Current Pharmaceutical Design, vol. 18, no. 12, pp. 1645–1654, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. J. K. Kundu and Y.-J. Surh, “Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives,” Cancer Letters, vol. 269, no. 2, pp. 243–261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. Y. Bai, Q.-Q. Mao, J. Qin et al., “Resveratrol induces apoptosis and cell cycle arrest of human T24 bladder cancer cells in vitro and inhibits tumor growth in vivo,” Cancer Science, vol. 101, no. 2, pp. 488–493, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Parekh, L. Motiwale, N. Naik, and K. V. K. Rao, “Downregulation of cyclin D1 is associated with decreased levels of p38 MAP kinases, Akt/PKB and Pak1 during chemopreventive effects of resveratrol in liver cancer cells,” Experimental and Toxicologic Pathology, vol. 63, no. 1-2, pp. 167–173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Fan, S. Jiang, L. Zhang, and Y. Bai, “Molecular mechanism of apoptosis induction by resveratrol, a natural cancer chemopreventive agent,” International Journal for Vitamin and Nutrition Research, vol. 78, no. 1, pp. 3–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Madan, S. Prasad, P. Roy, J. George, and Y. Shukla, “Regulation of apoptosis by resveratrol through JAK/STAT and mitochondria mediated pathway in human epidermoid carcinoma A431 cells,” Biochemical and Biophysical Research Communications, vol. 377, no. 4, pp. 1232–1237, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. P. Roy, N. Kalra, S. Prasad, J. George, and Y. Shukla, “Chemopreventive potential of resveratrol in mouse skin tumors through regulation of mitochondrial and PI3K/AKT signaling pathways,” Pharmaceutical Research, vol. 26, no. 1, pp. 211–217, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Farnebo, V. J. N. Bykov, and K. G. Wiman, “The p53 tumor suppressor: a master regulator of diverse cellular processes and therapeutic target in cancer,” Biochemical and Biophysical Research Communications, vol. 396, no. 1, pp. 85–89, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Yáñez, L. Galán, J. Matías-Guiu, A. Vela, A. Guerrero, and A. G. García, “CSF from amyotrophic lateral sclerosis patients produces glutamate independent death of rat motor brain cortical neurons: protection by resveratrol but not riluzole,” Brain Research, vol. 1423, pp. 77–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Orallo, “Trans-resveratrol: a magical elixir of eternal youth?” Current Medicinal Chemistry, vol. 15, no. 19, pp. 1887–1898, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. L. M. Vieira de Almeida, C. C. Piñeiro, M. C. Leite et al., “Resveratrol increases glutamate uptake, glutathione content, and S100B secretion in cortical astrocyte cultures,” Cellular and Molecular Neurobiology, vol. 27, no. 5, pp. 661–668, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. F. Simão, A. Matté, A. S. Pagnussat, C. A. Netto, and C. G. Salbego, “Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3β and CREB through PI3-K/Akt pathways,” European Journal of Neuroscience, vol. 36, no. 7, pp. 2899–2905, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. T. D. King, B. Clodfelder-Miller, K. A. Barksdale, and G. N. Bijur, “Unregulated mitochondrial GSK3β activity results in NADH: ubiquinone oxidoreductase deficiency,” Neurotoxicity Research, vol. 14, no. 4, pp. 367–382, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. D.-W. Li, Z.-Q. Liu, W. Chen, M. Yao, and G.-R. Li, “Association of glycogen synthase kinase-3β with Parkinson's disease (Review),” Molecular Medicine Reports, vol. 9, no. 6, pp. 2043–2050, 2014. View at Publisher · View at Google Scholar · View at Scopus
  58. A. V. Witte, L. Kerti, D. S. Margulies, and A. Flöel, “Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults,” Journal of Neuroscience, vol. 34, no. 23, pp. 7862–7870, 2014. View at Publisher · View at Google Scholar · View at Scopus
  59. D. O. Kennedy, E. L. Wightman, J. L. Reay et al., “Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation,” American Journal of Clinical Nutrition, vol. 91, no. 6, pp. 1590–1597, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. E. L. Wightman, J. L. Reay, C. F. Haskell, G. Williamson, T. P. Dew, and D. O. Kennedy, “Effects of resveratrol alone or in combination with piperine on cerebral blood flow parameters and cognitive performance in human subjects: a randomised, double-blind, placebo-controlled, cross-over investigation,” British Journal of Nutrition, vol. 112, no. 2, pp. 203–213, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. F. Uchiumi, T. Watanabe, S. Hasegawa, T. Hoshi, Y. Higami, and S.-I. Tanuma, “The effect of resveratrol on the Werner syndrome RecQ helicase gene and telomerase activity,” Current Aging Science, vol. 4, no. 1, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Jayasena, A. Poljak, G. Smythe, N. Braidy, G. Münch, and P. Sachdev, “The role of polyphenols in the modulation of sirtuins and other pathways involved in Alzheimer's disease,” Ageing Research Reviews, vol. 12, no. 4, pp. 867–883, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. E. Sahin, S. Colla, M. Liesa et al., “Telomere dysfunction induces metabolic and mitochondrial compromise,” Nature, vol. 470, no. 7334, pp. 359–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. Z. Wu, P. Puigserver, U. Andersson et al., “Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1,” Cell, vol. 98, no. 1, pp. 115–124, 1999. View at Publisher · View at Google Scholar · View at Scopus
  65. R. C. Scarpulla, “Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network,” Biochimica et Biophysica Acta—Molecular Cell Research, vol. 1813, no. 7, pp. 1269–1278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. X. Mu, G. He, Y. Cheng, X. Li, B. Xu, and G. Du, “Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro,” Pharmacology Biochemistry and Behavior, vol. 92, no. 4, pp. 642–648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. Wu, X. Li, J. X. Zhu et al., “Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson's disease,” NeuroSignals, vol. 19, no. 3, pp. 163–174, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. Z. Li, L. Pang, F. Fang et al., “Resveratrol attenuates brain damage in a rat model of focal cerebral ischemia via up-regulation of hippocampal Bcl-2,” Brain Research, vol. 1450, pp. 116–124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Kairisalo, A. Bonomo, A. Hyrskyluoto et al., “Resveratrol reduces oxidative stress and cell death and increases mitochondrial antioxidants and XIAP in PC6.3-cells,” Neuroscience Letters, vol. 488, no. 3, pp. 263–266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  70. F. Jin, Q. Wu, Y.-F. Lu, Q.-H. Gong, and J.-S. Shi, “Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats,” European Journal of Pharmacology, vol. 600, no. 1–3, pp. 78–82, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Zhang, J.-S. Shi, H. Zhou, B. Wilson, J.-S. Hong, and H.-M. Gao, “Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions,” Molecular Pharmacology, vol. 78, no. 3, pp. 466–477, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. D. J. Selkoe, “Alzheimer's disease is a synaptic failure,” Science, vol. 298, no. 5594, pp. 789–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  73. R. E. Tanzi, “The synaptic Aβ hypothesis of Alzheimer disease,” Nature Neuroscience, vol. 8, no. 8, pp. 977–979, 2005. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Saragoni, P. Hernández, and R. B. Maccioni, “Differential association of tau with subsets of microtubules containing posttranslationally-modified tubulin variants in neuroblastoma cells,” Neurochemical Research, vol. 25, no. 1, pp. 59–70, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. M. J. Smith, R. A. Crowther, and M. Goedert, “The natural osmolyte trimethylamine N-oxide (TMAO) restores the ability of mutant tau to promote microtubule assembly,” FEBS Letters, vol. 484, no. 3, pp. 265–270, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Takashima, T. Honda, K. Yasutake et al., “Activation of tau protein kinase I/glycogen synthase kinase-3β by amyloid β peptide (25–35) enhances phosphorylation of tau in hippocampal neurons,” Neuroscience Research, vol. 31, no. 4, pp. 317–323, 1998. View at Publisher · View at Google Scholar · View at Scopus
  77. A. C. Cuello, “Intracellular and extracellular Aβ, a tale of two neuropathologies,” Brain Pathology, vol. 15, no. 1, pp. 66–71, 2005. View at Google Scholar · View at Scopus
  78. D. W. Ethell and L. A. Buhler, “Fas ligand-mediated apoptosis in degenerative disorders of the brain,” Journal of Clinical Immunology, vol. 23, no. 6, pp. 439–446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Dudek, S. R. Datta, T. F. Franke et al., “Regulation of neuronal survival by the serine-threonine protein kinase Akt,” Science, vol. 275, no. 5300, pp. 661–665, 1997. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Feng, X.-P. Wang, S.-G. Yang et al., “Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation,” NeuroToxicology, vol. 30, no. 6, pp. 986–995, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. Y. Porat, A. Abramowitz, and E. Gazit, “Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism,” Chemical Biology and Drug Design, vol. 67, no. 1, pp. 27–37, 2006. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Gertz, G. T. T. Nguyen, F. Fischer et al., “A molecular mechanism for direct sirtuin activation by resveratrol,” PLoS ONE, vol. 7, no. 11, Article ID e49761, 2012. View at Publisher · View at Google Scholar · View at Scopus
  83. B. P. Hubbard, A. P. Gomes, H. Dai et al., “Evidence for a common mechanism of SIRT1 regulation by allosteric activators,” Science, vol. 339, no. 6124, pp. 1216–1219, 2013. View at Publisher · View at Google Scholar · View at Scopus
  84. W. Qin, T. Yang, L. Ho et al., “Neuronal SIRT1 activation as a novel mechanism underlying the prevention of alzheimer disease amyloid neuropathology by calorie restriction,” The Journal of Biological Chemistry, vol. 281, no. 31, pp. 21745–21754, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. Y. Zhou, Y. Su, B. Li et al., “Non-steroidal anti-inflammatory drugs can lower amyloidogenic Ab42 by inhibiting Rho,” Science, vol. 302, pp. 1215–1217, 2003. View at Google Scholar
  86. T. J. Cohen, J. L. Guo, D. E. Hurtado et al., “The acetylation of tau inhibits its function and promotes pathological tau aggregation,” Nature Communications, vol. 2, no. 1, article 252, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. S.-W. Min, S.-H. Cho, Y. Zhou et al., “Acetylation of tau inhibits its degradation and contributes to tauopathy,” Neuron, vol. 67, no. 6, pp. 953–966, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. C. Hooper, E. Meimaridou, M. Tavassoli, G. Melino, S. Lovestone, and R. Killick, “p53 is upregulated in Alzheimer's disease and induces tau phosphorylation in HEK293a cells,” Neuroscience Letters, vol. 418, no. 1, pp. 34–37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Cantó and J. Auwerx, “Targeting sirtuin 1 to improve metabolism: all you need is NAD+?” Pharmacological Reviews, vol. 64, no. 1, pp. 166–187, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. V. Vingtdeux, L. Giliberto, H. Zhao et al., “AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism,” The Journal of Biological Chemistry, vol. 285, no. 12, pp. 9100–9113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Fogarty, S. A. Hawley, K. A. Green, N. Saner, K. J. Mustard, and D. G. Hardie, “Calmodulin-dependent protein kinase kinase-β activates AMPK without forming a stable complex: Synergistic effects of Ca2+ and AMP,” Biochemical Journal, vol. 426, no. 1, pp. 109–118, 2010. View at Publisher · View at Google Scholar · View at Scopus
  92. S.-J. Park, F. Ahmad, A. Philp et al., “Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases,” Cell, vol. 148, supplement 3, pp. 421–433, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. S. A. Hawley, F. A. Ross, C. Chevtzoff et al., “Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation,” Cell Metabolism, vol. 11, no. 6, pp. 554–565, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. C. Cantó and J. Auwerx, “AMP-activated protein kinase and its downstream transcriptional pathways,” Cellular and Molecular Life Sciences, vol. 67, no. 20, pp. 3407–3423, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. X. Wang, W. Wang, L. Li, G. Perry, H. G. Lee, and X. Zhu, “Oxidative stress and mithocondrial dysfunction in Alzheimer's disease,” Biochimica et Biophysica Acta, vol. 1842, no. 8, pp. 1240–1247, 2014. View at Google Scholar
  96. K. Higashida, S. H. Kim, S. R. Jung, M. Asaka, J. O. Holloszy, and D.-H. Han, “Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: a reevaluation,” PLoS Biology, vol. 11, no. 7, Article ID e1001603, 2013. View at Publisher · View at Google Scholar · View at Scopus
  97. A. P. Gomes, N. L. Price, A. J. Y. Ling et al., “Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging,” Cell, vol. 155, no. 7, pp. 1624–1638, 2013. View at Publisher · View at Google Scholar · View at Scopus
  98. C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, “The hallmarks of aging,” Cell, vol. 153, no. 6, pp. 1194–1217, 2013. View at Publisher · View at Google Scholar · View at Scopus
  99. J. P. G. Vonsattel and M. DiFiglia, “Huntington disease,” Journal of Neuropathology and Experimental Neurology, vol. 57, no. 5, pp. 369–384, 1998. View at Publisher · View at Google Scholar · View at Scopus
  100. M. E. MacDonald, C. M. Ambrose, M. P. Duyao et al., “A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group,” Cell, vol. 72, no. 6, pp. 971–983, 1993. View at Publisher · View at Google Scholar
  101. P. Lajoie and E. L. Snapp, “Formation and toxicity of soluble polyglutamine oligomers in living cells,” PLoS ONE, vol. 5, no. 12, Article ID e15245, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. G. Cisbani and F. Cicchetti, “An in vitro perspective on the molecular mechanisms underlying mutant huntingtin protein toxicity,” Cell Death and Disease, vol. 3, no. 8, article e380, 2012. View at Publisher · View at Google Scholar · View at Scopus
  103. P. Kumar, S. S. V. Padi, P. S. Naidu, and A. Kumar, “Cyclooxygenase inhibition attenuates 3-nitropropionic acid-induced neurotoxicity in rats: possible antioxidant mechanisms,” Fundamental and Clinical Pharmacology, vol. 21, no. 3, pp. 297–306, 2007. View at Publisher · View at Google Scholar · View at Scopus
  104. X. Feng, N. Liang, D. Zhu et al., “Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway,” PLoS ONE, vol. 8, no. 3, Article ID e59888, 2013. View at Publisher · View at Google Scholar · View at Scopus
  105. B.-I. Bae, H. Xu, S. Igarashi et al., “p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease,” Neuron, vol. 47, no. 1, pp. 29–41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. J. Luo, A. Y. Nikolaev, S.-I. Imai et al., “Negative control of p53 by Sir2α promotes cell survival under stress,” Cell, vol. 107, no. 2, pp. 137–148, 2001. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Vaziri, S. K. Dessain, E. N. Eaton et al., “hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase,” Cell, vol. 107, no. 2, pp. 149–159, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Zhou, S. Kachhap, and K. K. Singh, “Mitochondrial impairment in p53-deficient human cancer cells,” Mutagenesis, vol. 18, no. 3, pp. 287–292, 2003. View at Publisher · View at Google Scholar · View at Scopus
  109. S. Matoba, J.-G. Kang, W. D. Patino et al., “p53 regulates mitochondrial respiration,” Science, vol. 312, no. 5780, pp. 1650–1653, 2006. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Granzotto, S. Bolognin, J. Scancar, R. Milacic, and P. Zatta, “β-amyloid toxicity increases with hydrophobicity in the presence of metal ions,” Monatshefte fur Chemie, vol. 142, no. 4, pp. 421–430, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. K. M. Choi, H. L. Lee, Y. Y. Kwon, M. S. Kang, S. K. Lee, and C. K. Lee, “Enhancement of mitochondrial function correlates with the extension of lifespan by caloric restriction and caloric restriction mimetics in yeast,” Biochemical and Biophysical Research Communications, vol. 441, no. 1, pp. 236–242, 2013. View at Publisher · View at Google Scholar · View at Scopus
  112. V. Desquiret-Dumas, N. Gueguen, G. Leman et al., “Resveratrol induces a mitochondrial complex i-dependent increase in nadh oxidation responsible for sirtuin activation in liver cells,” The Journal of Biological Chemistry, vol. 288, no. 51, pp. 36662–36675, 2013. View at Publisher · View at Google Scholar · View at Scopus
  113. D. Lettieri Barbato, S. Baldelli, B. Pagliei, K. Aquilano, and M. R. Ciriolo, “Caloric restriction and the nutrient-sensing PGC-1α in mitochondrial homeostasis: new perspectives in neurodegeneration,” International Journal of Cell Biology, vol. 2012, Article ID 759583, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  114. M. C. De Rijk, C. Tzourio, M. M. B. Breteler et al., “Prevalence of parkinsonism and Parkinson's disease in Europe: the EUROPARKINSON collaborative study. European Community Concerted Action on the Epidemiology of Parkinson’s disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 62, no. 1, pp. 10–15, 1997. View at Publisher · View at Google Scholar · View at Scopus
  115. T. Gasser, “Genetics of Parkinson's disease,” Current Opinion in Neurology, vol. 18, pp. 363–369, 2005. View at Google Scholar
  116. Y. He, T. Lee, and S. K. Leong, “6-Hydroxydopamine induced apoptosis of dopaminergic cells in the rat substantia nigra,” Brain Research, vol. 858, no. 1, pp. 163–166, 2000. View at Publisher · View at Google Scholar · View at Scopus
  117. B. I. Giasson, H. Ischiropoulos, V. M.-Y. Lee, and J. Q. Trojanowski, “The relationship between oxidative/nitrative stress and pathological inclusions in Alzheimer's and Parkinson's diseases,” Free Radical Biology and Medicine, vol. 32, no. 12, pp. 1264–1275, 2002. View at Publisher · View at Google Scholar · View at Scopus
  118. D. Alvira, M. Yeste-Velasco, J. Folch et al., “Comparative analysis of the effects of resveratrol in two apoptotic models: inhibition of complex I and potassium deprivation in cerebellar neurons,” Neuroscience, vol. 147, no. 3, pp. 746–756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. A. Ferretta, A. Gaballo, P. Tanzarella et al., “Effect of resveratrol on mitochondrial function: implications in parkin-associated familiar Parkinson's disease,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1842, no. 7, pp. 902–915, 2014. View at Publisher · View at Google Scholar · View at Scopus
  120. A. Vaarmann, S. Gandhi, and A. Y. Abramov, “Dopamine induces Ca2+ signaling in astrocytes through reactive oxygen species generated by monoamine oxidase,” Journal of Biological Chemistry, vol. 285, no. 32, pp. 25018–25023, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. D. J. Surmeier, J. N. Guzman, J. Sanchez-Padilla, and J. A. Goldberg, “The origins of oxidant stress in Parkinson's disease and therapeutic strategies,” Antioxidants and Redox Signaling, vol. 14, no. 7, pp. 1289–1301, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. R. S. Duncan, D. L. Goad, M. A. Grillo, S. Kaja, A. J. Payne, and P. Koulen, “Control of intracellular calcium signaling as a neuroprotective strategy,” Molecules, vol. 15, no. 3, pp. 1168–1195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. A. E. McCalley, S. Kaja, A. J. Payne, and P. Koulen, “Resveratrol and calcium signaling: molecular mechanisms and clinical relevance,” Molecules, vol. 19, no. 6, pp. 7327–7340, 2014. View at Publisher · View at Google Scholar
  124. J. Blanchet, F. Longpré, G. Bureau et al., “Resveratrol, a red wine polyphenol, protects dopaminergic neurons in MPTP-treated mice,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 5, pp. 1243–1250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. G. Donmez, A. Arun, C. Y. Chung, P. J. Mclean, S. Lindquist, and L. Guarente, “SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones,” The Journal of Neuroscience, vol. 32, no. 1, pp. 124–132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  126. R. Raynes, B. D. Leckey Jr., K. Nguyen, and S. D. Westerheide, “Heat shock and caloric restriction have a synergistic effect on the heat shock response in a sir2.1-dependent manner in Caenorhabditis elegans,” The Journal of Biological Chemistry, vol. 287, no. 34, pp. 29045–29053, 2012. View at Publisher · View at Google Scholar · View at Scopus
  127. S. D. Westerheide, J. Anckar, S. M. Stevens Jr., L. Sistonen, and R. I. Morimoto, “Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT,” Science, vol. 323, no. 5917, pp. 1063–1066, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. D.-W. Li, Z.-Q. Liu, W. Chen, M. Yao, and G.-R. Li, “Association of glycogen synthase kinase-3β with Parkinson's disease (Review),” Molecular Medicine Reports, vol. 9, no. 6, pp. 2043–2050, 2014. View at Publisher · View at Google Scholar · View at Scopus
  129. F. Simão, A. Matté, A. S. Pagnussat, C. A. Netto, and C. G. Salbego, “Resveratrol prevents CA1 neurons against ischemic injury by parallel modulation of both GSK-3β and CREB through PI3-K/Akt pathways,” European Journal of Neuroscience, vol. 36, no. 7, pp. 2899–2905, 2012. View at Publisher · View at Google Scholar · View at Scopus
  130. L. P. Rowland and N. A. Shneider, “Amyotrophic lateral sclerosis,” The New England Journal of Medicine, vol. 344, no. 22, pp. 1688–1700, 2001. View at Publisher · View at Google Scholar · View at Scopus
  131. D. W. Mulder, L. T. Kurland, K. P. Offord, and M. Beard, “Familial adult motor neuron disease: amyotrophic lateral sclerosis,” Neurology, vol. 36, no. 4, pp. 511–517, 1986. View at Publisher · View at Google Scholar · View at Scopus
  132. S. Da Cruz and D. W. Cleveland, “Understanding the role of TDP-43 and FUS/TLS in ALS and beyond,” Current Opinion in Neurobiology, vol. 21, no. 6, pp. 904–919, 2011. View at Publisher · View at Google Scholar · View at Scopus
  133. M. Prudencio, P. J. Hart, D. R. Borchelt, and P. M. Andersen, “Variation in aggregation propensities among ALS-associated variants of SOD1: correlation to human disease,” Human Molecular Genetics, vol. 18, no. 17, pp. 3217–3226, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. M. DeJesus-Hernandez, I. R. Mackenzie, B. F. Boeve et al., “Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS,” Neuron, vol. 72, no. 2, pp. 245–256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  135. A. E. Renton, E. Majounie, A. Waite et al., “A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD,” Neuron, vol. 72, no. 2, pp. 257–268, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. J. D. Rothstein, “Current hypotheses for the underlying biology of amyotrophic lateral sclerosis,” Annals of Neurology, vol. 65, no. 1, pp. S3–S9, 2009. View at Google Scholar · View at Scopus
  137. C. M. Karch, M. Prudencio, D. D. Winkler, P. J. Hart, and D. R. Borchelt, “Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 19, pp. 7774–7779, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. J. Dunlop, H. Beal McIlvain, Y. She, and D. S. Howland, “Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic superoxide dismutase mutant rat model of amyotrophic lateral sclerosis,” Journal of Neuroscience, vol. 23, no. 5, pp. 1688–1696, 2003. View at Google Scholar · View at Scopus
  139. F. J. Miana-Mena, E. Piedrafita, C. González-Mingot et al., “Levels of membrane fluidity in the spinal cord and the brain in an animal model of amyotrophic lateral sclerosis,” Journal of Bioenergetics and Biomembranes, vol. 43, no. 2, pp. 181–186, 2011. View at Publisher · View at Google Scholar · View at Scopus
  140. P. Shi, J. Gal, D. M. Kwinter, X. Liu, and H. Zhu, “Mitochondrial dysfunction in amyotrophic lateral sclerosis,” Biochimica et Biophysica Acta, vol. 1802, no. 1, pp. 45–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Cozzolino and M. T. Carrì, “Mitochondrial dysfunction in ALS,” Progress in Neurobiology, vol. 97, no. 2, pp. 54–66, 2012. View at Publisher · View at Google Scholar · View at Scopus
  142. L. Faes and G. Callewaert, “Mitochondrial dysfunction in familial amyotrophic lateral sclerosis,” Journal of Bioenergetics and Biomembranes, vol. 43, no. 6, pp. 587–592, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. A. Kumar, D. Ghosh, and R. L. Singh, “Amyotrophic lateral sclerosis and metabolomics: clinical implication and therapeutic approach,” Journal of Biomarkers, vol. 2013, Article ID 538765, 15 pages, 2013. View at Publisher · View at Google Scholar
  144. P. Pasinelli and R. H. Brown, “Molecular biology of amyotrophic lateral sclerosis: insights from genetics,” Nature Reviews Neuroscience, vol. 7, no. 9, pp. 710–723, 2006. View at Publisher · View at Google Scholar · View at Scopus
  145. M. T. Carrì and M. Cozzolino, “SOD1 and mitochondria in ALS: a dangerous liaison,” Journal of Bioenergetics and Biomembranes, vol. 43, no. 6, pp. 593–599, 2011. View at Publisher · View at Google Scholar · View at Scopus
  146. A. Igoudjil, J. Magrané, L. R. Fischer et al., “In vivo pathogenic role of mutant SOD1 localized in the mitochondrial intermembrane space,” Journal of Neuroscience, vol. 31, no. 44, pp. 15826–15837, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. R. A. Saccon, R. K. A. Bunton-Stasyshyn, E. M. C. Fisher, and P. Fratta, “Is SOD1 loss of function involved in amyotrophic lateral sclerosis?” Brain, vol. 136, no. 8, pp. 2342–2358, 2013. View at Publisher · View at Google Scholar · View at Scopus
  148. M. K. Jaiswal, “Selective vulnerability of motoneuron and perturbed mitochondrial calcium homeostasis in amyotrophic lateral sclerosis: implications for motoneurons specific calcium dysregulation,” Molecular and Cellular Therapies, vol. 2, no. 1, article 26, 2014. View at Publisher · View at Google Scholar
  149. J. Lautenschläger, T. Prell, J. Ruhmer, L. Weidemann, O. W. Witte, and J. Grosskreutz, “Overexpression of human mutated G93A SOD1 changes dynamics of the ER mitochondria calcium cycle specifically in mouse embryonic motor neurons,” Experimental Neurology, vol. 247, pp. 91–100, 2013. View at Publisher · View at Google Scholar · View at Scopus
  150. S. D. Rao and J. H. Weiss, “Excitotoxic and oxidative cross-talk between motor neurons and glia in ALS pathogenesis,” Trends in Neurosciences, vol. 27, no. 1, pp. 17–23, 2004. View at Publisher · View at Google Scholar · View at Scopus
  151. C. Raoul, A. G. Estévez, H. Nishimune et al., “Motoneuron death triggered by a specific pathway downstream of fas: potentiation by ALS-linked SOD1 mutations,” Neuron, vol. 35, no. 6, pp. 1067–1083, 2002. View at Publisher · View at Google Scholar · View at Scopus
  152. H. Kawamata, S. K. Ng, N. Diaz et al., “Abnormal intracellular calcium signaling and SNARE dependent exocytosis contributes to SOD1G93A astrocyte- mediated toxicity in amyotrophic lateral sclerosis,” The Journal of Neuroscience, vol. 34, no. 6, pp. 2331–2348, 2014. View at Publisher · View at Google Scholar · View at Scopus
  153. M. L. Tradewell, Z. Yu, M. Tibshirani, M.-C. Boulanger, H. D. Durham, and S. Richard, “Arginine methylation by prmt1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations,” Human Molecular Genetics, vol. 21, no. 1, Article ID ddr448, pp. 136–149, 2012. View at Publisher · View at Google Scholar · View at Scopus
  154. L. Song, L. Chen, X. Zhang, J. Li, and W. Le, “Resveratrol ameliorates motor neuron degeneration and improves survival in SOD1G93A mouse model of amyotrophic lateral sclerosis,” BioMed Research International, vol. 2014, Article ID 483501, 10 pages, 2014. View at Publisher · View at Google Scholar
  155. S. Davinelli, N. Sapere, M. Visentin, D. Zella, and G. Scapagnini, “Enhancement of mitochondrial biogenesis with polyphenols: combined effects of resveratrol and equol in human endothelial cells,” Immunity & Ageing, vol. 10, no. 1, article 28, 2013. View at Publisher · View at Google Scholar · View at Scopus
  156. W. Zhao, M. Varghese, S. Yemul et al., “Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis,” Molecular Neurodegeneration, vol. 6, no. 1, article 51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. S. M. Han, H. Tsuda, Y. Yang et al., “Secreted VAPB/ALS8 major sperm protein domains modulate mitochondrial localization and morphology via growth cone guidance receptors,” Developmental Cell, vol. 22, no. 2, pp. 348–362, 2012. View at Publisher · View at Google Scholar · View at Scopus
  158. G. Donmez, A. Arun, C.-Y. Chung, P. J. Mclean, S. Lindquist, and L. Guarente, “SIRT1 protects against α-synuclein aggregation by activating molecular chaperones,” Journal of Neuroscience, vol. 32, no. 1, pp. 124–132, 2012. View at Publisher · View at Google Scholar · View at Scopus
  159. D. Kim, M. D. Nguyen, M. M. Dobbin et al., “SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis,” The EMBO Journal, vol. 26, no. 13, pp. 3169–3179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  160. T. Walle, “Bioavailability of resveratrol,” Annals of the New York Academy of Sciences, vol. 1215, no. 1, pp. 9–15, 2011. View at Publisher · View at Google Scholar · View at Scopus
  161. A. Scala, S. Ficarra, A. Russo et al., “A new erythrocyte-based biochemical approach to predict the antiproliferative effects of heterocyclic scaffolds: the case of indolone,” Biochimica et Biophysica Acta—General Subjects, vol. 1850, no. 1, pp. 73–79, 2015. View at Publisher · View at Google Scholar
  162. D. Su, Y. Cheng, M. Liu et al., “Comparision of piceid and resveratrol in antioxidation and antiproliferation activities in vitro,” PLoS ONE, vol. 8, no. 1, Article ID e54505, 2013. View at Publisher · View at Google Scholar · View at Scopus