Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 3187560, 9 pages
http://dx.doi.org/10.1155/2016/3187560
Research Article

Evidence for Detrimental Cross Interactions between Reactive Oxygen and Nitrogen Species in Leber’s Hereditary Optic Neuropathy Cells

1Department of Biochemical Sciences and Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
2CNR Institute of Molecular Biology and Pathology, 00185 Rome, Italy
3Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
4Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
5Centre for Experimental Neurological Therapies, S. Andrea Hospital-Site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Sapienza University of Rome, 00185 Rome, Italy

Received 10 August 2015; Revised 19 October 2015; Accepted 25 October 2015

Academic Editor: Liudmila Korkina

Copyright © 2016 Micol Falabella et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Carelli, F. N. Ross-Cisneros, and A. A. Sadun, “Mitochondrial dysfunction as a cause of optic neuropathies,” Progress in Retinal and Eye Research, vol. 23, no. 1, pp. 53–89, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Kirches, “LHON: mitochondrial mutations and more,” Current Genomics, vol. 12, no. 1, pp. 44–54, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. A. Sadun, C. La Morgia, and V. Carelli, “Leber's hereditary optic neuropathy,” Current Treatment Options in Neurology, vol. 13, no. 1, pp. 109–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. N. J. Newman, “Hereditary optic neuropathies: from the mitochondria to the optic nerve,” American Journal of Ophthalmology, vol. 140, no. 3, pp. 517.e1–513.e9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Meyerson, G. Van Stavern, and C. McClelland, “Leber hereditary optic neuropathy: current perspectives,” Clinical Ophthalmology, vol. 9, pp. 1165–1176, 2015. View at Publisher · View at Google Scholar
  6. A. E. Harding, M. G. Sweeney, D. H. Miller et al., “Occurrence of a multiple sclerosis-like illness in women who have a Leber's hereditary optic neuropathy mitochondrial DNA mutation,” Brain, vol. 115, no. 4, pp. 979–989, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Matthews, C. Enzinger, F. Fazekas et al., “MRI in Leber's hereditary optic neuropathy: the relationship to multiple sclerosis,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 86, no. 5, pp. 537–542, 2015. View at Publisher · View at Google Scholar
  8. A. R. Parry-Jones, J. D. Mitchell, W. J. Gunarwardena, and S. Shaunak, “Leber's hereditary optic neuropathy associated with multiple sclerosis: Harding's syndrome,” Practical Neurology, vol. 8, no. 2, pp. 118–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Sciacco, A. Prelle, G. Fagiolari et al., “A case of CPT deficiency, homoplasmic mtDNA mutation and ragged red fibers at muscle biopsy,” Journal of the Neurological Sciences, vol. 239, no. 1, pp. 21–24, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Souied, P. J. Pisella, B. Ossareh et al., “Positive diagnosis of Leber's hereditary optic neuropathy using molecular genetics,” Journal of French Ophthalmology, vol. 20, no. 1, pp. 65–70, 1997. View at Google Scholar
  11. A. Baracca, G. Solaini, G. Sgarbi et al., “Severe impairment of complex I-driven adenosine triphosphate synthesis in leber hereditary optic neuropathy cybrids,” Archives of Neurology, vol. 62, no. 5, pp. 730–736, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. M. D. Brown, I. A. Trounce, A. S. Jun, J. C. Allen, and D. C. Wallace, “Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber's hereditary optic neuropathy mitochondrial DNA mutation,” The Journal of Biological Chemistry, vol. 275, no. 51, pp. 39831–39836, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Korsten, I. F. M. de Coo, L. Spruijt, L. E. A. de Wit, H. J. M. Smeets, and W. Sluiter, “Patients with Leber hereditary optic neuropathy fail to compensate impaired oxidative phosphorylation,” Biochimica et Biophysica Acta—Bioenergetics, vol. 1797, no. 2, pp. 197–203, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. N.-G. Larsson, O. Andersen, E. Holme, A. Oldfors, and J. Wahlstrom, “Leber's hereditary optic neuropathy and complex I deficiency in muscle,” Annals of Neurology, vol. 30, no. 5, pp. 701–708, 1991. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Majander, M. Finel, M.-L. Savontaus, E. Nikoskelainen, and M. Wikström, “Catalytic activity of complex I in cell lines that possess replacement mutations in the ND genes in Leber's hereditary optic neuropathy,” European Journal of Biochemistry, vol. 239, no. 1, pp. 201–207, 1996. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Carelli, M. Rugolo, G. Sgarbi et al., “Bioenergetics shapes cellular death pathways in Leber's hereditary optic neuropathy: a model of mitochondrial neurodegeneration,” Biochimica et Biophysica Acta, vol. 1658, no. 1-2, pp. 172–179, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Carelli, C. La Morgia, M. L. Valentino, P. Barboni, F. N. Ross-Cisneros, and A. A. Sadun, “Retinal ganglion cell neurodegeneration in mitochondrial inherited disorders,” Biochimica et Biophysica Acta—Bioenergetics, vol. 1787, no. 5, pp. 518–528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. S. Lin, M. S. Sharpley, W. Fan et al., “Mouse mtDNA mutant model of Leber hereditary optic neuropathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 49, pp. 20065–20070, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Avula, S. Parikh, S. Demarest, J. Kurz, and A. Gropman, “Treatment of mitochondrial disorders,” Current Treatment Options in Neurology, vol. 16, article 292, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. S. DiMauro and M. Mancuso, “Mitochondrial diseases: therapeutic approaches,” Bioscience Reports, vol. 27, no. 1–3, pp. 125–137, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. D. J. Stuehr, “Mammalian nitric oxide synthases,” Biochimica et Biophysica Acta—Bioenergetics, vol. 1411, no. 2-3, pp. 217–230, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. J. L. Zweier, A. Samouilov, and P. Kuppusamy, “Non-enzymatic nitric oxide synthesis in biological systems,” Biochimica et Biophysica Acta—Bioenergetics, vol. 1411, no. 2-3, pp. 250–262, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. B. G. Hill, B. P. Dranka, S. M. Bailey, J. R. Lancaster Jr., and V. M. Darley-Usmar, “What part of NO don't you understand? Some answers to the cardinal questions in nitric oxide biology,” The Journal of Biological Chemistry, vol. 285, no. 26, pp. 19699–19704, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Villanueva and C. Giulivi, “Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease,” Free Radical Biology and Medicine, vol. 49, no. 3, pp. 307–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Sarti, M. Arese, A. Bacchi et al., “Nitric oxide and mitochondrial complex IV,” IUBMB Life, vol. 55, no. 10-11, pp. 605–611, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Sarti, E. Forte, D. Mastronicola, A. Giuffrè, and M. Arese, “Cytochrome c oxidase and nitric oxide in action: molecular mechanisms and pathophysiological implications,” Biochimica et Biophysica Acta—Bioenergetics, vol. 1817, no. 4, pp. 610–619, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. P. S. Brookes, D. W. Kraus, S. Shiva et al., “Control of mitochondrial respiration by NO, effects of low oxygen and respiratory state,” The Journal of Biological Chemistry, vol. 278, pp. 31603–31609, 2003. View at Publisher · View at Google Scholar
  28. G. C. Brown and C. E. Cooper, “Nanomolar concentrations of nitric oxide reversibly inhibit synaptosomal respiration by competing with oxygen at cytochrome oxidase,” FEBS Letters, vol. 356, no. 2-3, pp. 295–298, 1994. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Mastronicola, M. L. Genova, M. Arese et al., “Control of respiration by nitric oxide in Keilin-Hartree particles, mitochondria and SH-SY5Y neuroblastoma cells,” Cellular and Molecular Life Sciences, vol. 60, no. 8, pp. 1752–1759, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. S. Beckman, T. W. Beckman, J. Chen, P. A. Marshall, and B. A. Freeman, “Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 4, pp. 1620–1624, 1990. View at Publisher · View at Google Scholar · View at Scopus
  31. G. G. Kovács, R. Höftberger, K. Majtényi et al., “Neuropathology of white matter disease in Leber's hereditary optic neuropathy,” Brain, vol. 128, no. 1, pp. 35–41, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Hansen, P. Bross, and J. Hansen, “A cellular viability assay to monitor drug toxicity,” Methods in Molecular Biology, vol. 648, pp. 303–311, 2010. View at Publisher · View at Google Scholar
  33. P. A. Kramer, S. Ravi, B. Chacko, M. S. Johnson, and V. M. Darley-Usmar, “A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: implications for their use as bioenergetic biomarkers,” Redox Biology, vol. 2, no. 1, pp. 206–210, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. B. J. Marriage, M. T. Clandinin, I. M. MacDonald, and D. M. Glerum, “The use of lymphocytes to screen for oxidative phosphorylation disorders,” Analytical Biochemistry, vol. 313, no. 1, pp. 137–144, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Y. W. Man, P. G. Griffiths, D. T. Brown, N. Howell, D. M. Turnbull, and P. F. Chinnery, “The epidemiology of leber hereditary optic neuropathy in the North East of England,” American Journal of Human Genetics, vol. 72, no. 2, pp. 333–339, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. A. A. Sadun, C. La Morgia, and V. Carelli, “Mitochondrial optic neuropathies: our travels from bench to bedside and back again,” Clinical & Experimental Ophthalmology, vol. 41, no. 7, pp. 702–712, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Floreani, E. Napoli, A. Martinuzzi et al., “Antioxidant defences in cybrids harboring mtDNA mutations associated with Leber's hereditary optic neuropathy,” The FEBS Journal, vol. 272, no. 5, pp. 1124–1135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Schoeler, K. Winkler-Stuck, R. Szibor et al., “Glutathione depletion in antioxidant defense of differentiated NT2-LHON cybrids,” Neurobiology of Disease, vol. 25, no. 3, pp. 536–544, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Qi, L. Sun, W. W. Hauswirth, A. S. Lewin, and J. Guy, “Use of mitochondrial antioxidant defenses for rescue of cells with a leber hereditary optic neuropathy-causing mutation,” Archives of Ophthalmology, vol. 125, no. 2, pp. 268–272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. J. T. Hancock and M. Whiteman, “Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species,” Annals of the New York Academy of Sciences, 2015. View at Publisher · View at Google Scholar
  41. B. Karaçay and D. J. Bonthius, “The neuronal nitric oxide synthase (nNOS) gene and neuroprotection against alcohol toxicity,” Cellular and Molecular Neurobiology, vol. 35, pp. 449–461, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. Y. Koriyama, M. Kamiya, T. Takadera et al., “Protective action of nipradilol mediated through S-nitrosylation of Keap1 and HO-1 induction in retinal ganglion cells,” Neurochemistry International, vol. 61, no. 7, pp. 1242–1253, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. S. A. Lipton, Y.-B. Choi, Z.-H. Pan et al., “A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds,” Nature, vol. 364, no. 6438, pp. 626–632, 1993. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Yoshioka, A. Yamamuro, and S. Maeda, “Nitric oxide at a low concentration protects murine macrophage RAW264 cells against nitric oxide-induced death via cGMP signaling pathway,” British Journal of Pharmacology, vol. 139, no. 1, pp. 28–34, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. M. G. Mason, P. Nicholls, M. T. Wilson, and C. E. Cooper, “Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 3, pp. 708–713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Sarti, M. Arese, E. Forte, A. Giuffrè, and D. Mastronicola, “Mitochondria and nitric oxide: chemistry and pathophysiology,” in Advances in Mitochondrial Medicine, vol. 942 of Advances in Experimental Medicine and Biology, pp. 75–92, Springer, Amsterdam, The Netherlands, 2012. View at Google Scholar
  47. S. Beretta, L. Mattavelli, G. Sala et al., “Leber hereditary optic neuropathy mtDNA mutations disrupt glutamate transport in cybrid cell lines,” Brain, vol. 127, no. 10, pp. 2183–2192, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Giordano, L. Iommarini, L. Giordano et al., “Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy,” Brain, vol. 137, no. 2, pp. 335–353, 2014. View at Publisher · View at Google Scholar · View at Scopus
  49. B. P. Dranka, B. G. Hill, and V. M. Darley-Usmar, “Mitochondrial reserve capacity in endothelial cells: the impact of nitric oxide and reactive oxygen species,” Free Radical Biology and Medicine, vol. 48, no. 7, pp. 905–914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. C. H. Wiegman, C. Michaeloudes, G. Haji et al., “Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease,” Journal of Allergy and Clinical Immunology, vol. 136, no. 3, pp. 769–780, 2015. View at Publisher · View at Google Scholar
  51. B. R. Zelickson, G. A. Benavides, M. S. Johnson et al., “Nitric oxide and hypoxia exacerbate alcohol-induced mitochondrial dysfunction in hepatocytes,” Biochimica et Biophysica Acta, vol. 1807, no. 12, pp. 1573–1582, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. L. M. Slosky and T. W. Vanderah, “Therapeutic potential of peroxynitrite decomposition catalysts: a patent review,” Expert Opinion on Therapeutic Patents, vol. 25, no. 4, pp. 443–466, 2015. View at Publisher · View at Google Scholar