Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 5724973, 19 pages
http://dx.doi.org/10.1155/2016/5724973
Review Article

Cardioprotective Potentials of Plant-Derived Small Molecules against Doxorubicin Associated Cardiotoxicity

1Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE
2Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India
3Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India

Received 8 January 2016; Revised 2 April 2016; Accepted 20 April 2016

Academic Editor: Sidhartha D. Ray

Copyright © 2016 Shreesh Ojha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Simunek, M. Sterba, O. Popelova, M. Adamcova, R. Hrdina, and V. Gersl, “Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellular iron,” Pharmacological Reports, vol. 61, no. 1, pp. 154–171, 2009. View at Publisher · View at Google Scholar
  2. N. Yamaguchi, T. Fujii, S. Aoi, P. S. Kozuch, G. N. Hortobagyi, and R. H. Blum, “Comparison of cardiac events associated with liposomal doxorubicin, epirubicin and doxorubicin in breast cancer: a Bayesian network meta-analysis,” European Journal of Cancer, vol. 51, no. 16, pp. 2314–2320, 2015. View at Publisher · View at Google Scholar · View at Scopus
  3. T. V. Jerjian, A. E. Glode, L. A. Thompson, and C. L. O'Bryant, “Antibody-drug conjugates: a clinical pharmacy perspective on an emerging cancer therapy,” Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, vol. 36, no. 1, pp. 99–116, 2016. View at Google Scholar
  4. A. R. Lehenbauer Ludke, A. A.-R. S. Al-Shudiefat, S. Dhingra, D. S. Jassal, and P. K. Singal, “A concise description of cardioprotective strategies in doxorubicin-induced cardiotoxicity,” Canadian Journal of Physiology and Pharmacology, vol. 87, no. 10, pp. 756–763, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. B. L. Asselin, M. Devidas, L. Chen et al. et al., “Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed t-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-hodgkin lymphoma: a report of the children's oncology group randomized trial pediatric oncology group 9404,” Journal of Clinical Oncology, vol. 34, no. 8, pp. 854–862, 2016. View at Publisher · View at Google Scholar
  6. A. Tashakori Beheshti, H. Mostafavi Toroghi, G. Hosseini, A. Zarifian, F. Homaei Shandiz, and A. Fazlinezhad, “Carvedilol administration can prevent doxorubicin-induced cardiotoxicity: a double-blind randomized trial,” Cardiology, vol. 134, no. 1, pp. 47–53, 2016. View at Publisher · View at Google Scholar
  7. S. E. Lipshultz, V. I. Franco, T. L. Miller, S. D. Colan, and S. E. Sallan, “Cardiovascular disease in adult survivors of childhood cancer,” Annual Review of Medicine, vol. 66, pp. 161–176, 2015. View at Publisher · View at Google Scholar · View at Scopus
  8. C.-J. Weng and G.-C. Yen, “Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives,” Cancer Treatment Reviews, vol. 38, no. 1, pp. 76–87, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Wen, X.-X. Qu, D. Wang et al., “Recent advances in design, synthesis and bioactivity of paclitaxel-mimics,” Fitoterapia, vol. 110, pp. 26–37, 2016. View at Publisher · View at Google Scholar
  10. W. Wang and Y.-S. Liang, “Artemisinin: a wonder drug from Chinese natural medicines,” Chinese Journal of Natural Medicines, vol. 14, no. 1, pp. 5–6, 2016. View at Google Scholar
  11. P. Angsutararux, S. Luanpitpong, and S. Issaragrisil, “Chemotherapy-induced cardiotoxicity: overview of the roles of oxidative stress,” Oxidative Medicine and Cellular Longevity, vol. 2015, Article ID 795602, 13 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. V. Varga, P. Ferdinandy, L. Liaudet, and P. Pacher, “Drug-induced mitochondrial dysfunction and cardiotoxicity,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 309, no. 9, pp. H1453–H1467, 2015. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Ghosh, J. Das, P. Manna, and P. C. Sil, “The protective role of arjunolic acid against doxorubicin induced intracellular ROS dependent JNK-p38 and p53-mediated cardiac apoptosis,” Biomaterials, vol. 32, no. 21, pp. 4857–4866, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. E. H. Choi, H.-J. Chang, J. Y. Cho, and H. S. Chun, “Cytoprotective effect of anthocyanins against doxorubicin-induced toxicity in H9c2 cardiomyocytes in relation to their antioxidant activities,” Food and Chemical Toxicology, vol. 45, no. 10, pp. 1873–1881, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Saeed, O. Kadioglu, H. Khalid, Y. Sugimoto, and T. Efferth, “Activity of the dietary flavonoid, apigenin, against multidrug-resistant tumor cells as determined by pharmacogenomics and molecular docking,” Journal of Nutritional Biochemistry, vol. 26, no. 1, pp. 44–56, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Psotová, Š. Chlopčíkova, P. Miketová, J. Hrbác, and V. Šimánek, “Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes. Part III. Apigenin, baicalelin, kaempherol, luteolin and quercetin,” Phytotherapy Research, vol. 18, no. 7, pp. 516–521, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S.-Q. Wang, X.-F. Zhu, X.-N. Wang, T. Shen, F. Xiang, and H.-X. Lou, “Flavonoids from Malus hupehensis and their cardioprotective effects against doxorubicin-induced toxicity in H9c2 cells,” Phytochemistry, vol. 87, pp. 119–125, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Li, Y.-N. Geng, J.-D. Jiang, and W.-J. Kong, “Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus,” Evidence-Based Complementary and Alternative Medicine, vol. 2014, Article ID 289264, 12 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Lv, X. Yu, Y. Wang et al., “Berberine inhibits doxorubicin-triggered cardiomyocyte apoptosis via attenuating mitochondrial dysfunction and increasing Bcl-2 expression,” PLoS ONE, vol. 7, no. 10, Article ID e47351, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Hao, Y. Yu, B. Gu, Y. Xing, and M. Xue, “Protective effects of berberine against doxorubicin-induced cardiotoxicity in rats by inhibiting metabolism of doxorubicin,” Xenobiotica, vol. 45, no. 11, pp. 1024–1029, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. E. Ciesielska, A. Gwardys, and D. Metodiewa, “Anticancer, antiradical and antioxidative actions of novel Antoksyd S and its major components, baicalin and baicalein,” Anticancer Research, vol. 22, no. 5, pp. 2885–2892, 2002. View at Google Scholar · View at Scopus
  22. W.-T. Chang, J. Li, H.-H. Haung et al., “Baicalein protects against doxorubicin-induced cardiotoxicity by attenuation of mitochondrial oxidant injury and JNK activation,” Journal of Cellular Biochemistry, vol. 112, no. 10, pp. 2873–2881, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. B. D. Sahu, J. M. Kumar, M. Kuncha, R. M. Borkar, R. Srinivas, and R. Sistla, “Baicalein alleviates doxorubicin-induced cardiotoxicity via suppression of myocardial oxidative stress and apoptosis in mice,” Life Sciences, vol. 144, pp. 8–18, 2016. View at Publisher · View at Google Scholar
  24. P. Zhang, Y. Tang, N.-G. Li, Y. Zhu, and J.-A. Duan, “Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives,” Molecules, vol. 19, no. 10, pp. 16458–16476, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Fadillioglu, E. Oztas, H. Erdogan et al., “Protective effects of caffeic acid phenethyl ester on doxorubicin-induced cardiotoxicity in rats,” Journal of Applied Toxicology, vol. 24, no. 1, pp. 47–52, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. J. G. Sena Filho, S. L. Nimmo, H. S. Xavier, J. M. Barbosa-Filho, and R. H. Cichewicz, “Phenylethanoid and lignan glycosides from polar extracts of Lantana, a genus of verbenaceous plants widely used in traditional herbal therapies,” Journal of Natural Products, vol. 72, no. 7, pp. 1344–1347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. D.-S. Kim, H.-R. Kim, E.-R. Woo et al., “Protective effect of calceolarioside on adriamycin-induced cardiomyocyte toxicity,” European Journal of Pharmacology, vol. 541, no. 1-2, pp. 24–32, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Durst, H. Danenberg, R. Gallily et al., “Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 293, no. 6, pp. H3602–H3607, 2007. View at Google Scholar
  29. A. A. Fouad, W. H. Albuali, A. S. Al-Mulhim, and I. Jresat, “Cardioprotective effect of cannabidiol in rats exposed to doxorubicin toxicity,” Environmental Toxicology and Pharmacology, vol. 36, no. 2, pp. 347–357, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Hao, P. Mukhopadhyay, Z. Cao et al., “Cannabidiol protects against doxorubicin-induced cardiomyopathy by modulating mitochondrial function and biogenesis,” Molecular Medicine, vol. 21, pp. 38–45, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Rajesh, P. Mukhopadhyay, S. Btkai et al., “Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy,” Journal of the American College of Cardiology, vol. 56, no. 25, pp. 2115–2125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Horvth, P. Mukhopadhyay, G. Hask, and P. Pacher, “The endocannabinoid system and plant-derived cannabinoids in diabetes and diabetic complications,” American Journal of Pathology, vol. 180, no. 2, pp. 432–442, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Pennant, M. Steur, C. Moore, A. Butterworth, and L. Johnson, “Comparative validity of vitamin C and carotenoids as indicators of fruit and vegetable intake: a systematic review and meta-analysis of randomised controlled trials,” British Journal of Nutrition, vol. 114, no. 9, pp. 1331–1340, 2015. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Indu, T. S. Azhar, A. Nair, and C. K. K. Nair, “Amelioration of doxorubicin induced cardio-and hepato-toxicity by carotenoids,” Journal of Cancer Research and Therapeutics, vol. 10, no. 1, pp. 62–67, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. S. F. Nabavi, N. Braidy, S. Habtemariam et al., “Neuroprotective effects of chrysin: from chemistry to medicine,” Neurochemistry International, vol. 90, pp. 224–231, 2015. View at Publisher · View at Google Scholar
  36. E. M. Mantawy, W. M. El-Bakly, A. Esmat, A. M. Badr, and E. El-Demerdash, “Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis,” European Journal of Pharmacology, vol. 728, no. 1, pp. 107–118, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. H.-S. Kim, M. J. Quon, and J.-A. Kim, “New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate,” Redox Biology, vol. 2, pp. 187–195, 2014. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Hrelia, A. Bordoni, C. Angeloni et al., “Green tea extracts can counteract the modification of fatty acid composition induced by doxorubicin in cultured cardiomyocytes,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 66, no. 5-6, pp. 519–524, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. W. Li, S. Nie, M. Xie, Y. Chen, C. Li, and H. Zhang, “A major green tea component, (−)-epigallocatechin-3-gallate, ameliorates doxorubicin-mediated cardiotoxicity in cardiomyocytes of neonatal rats,” Journal of Agricultural and Food Chemistry, vol. 58, no. 16, pp. 8977–8982, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Zheng, H. C. M. Lee, M. M. bin Sattar, Y. Huang, and J.-S. Bian, “Cardioprotective effects of epigallocatechin-3-gallate against doxorubicin-induced cardiomyocyte injury,” European Journal of Pharmacology, vol. 652, no. 1–3, pp. 82–88, 2011. View at Publisher · View at Google Scholar
  41. N. M. Saeed, R. N. El-Naga, W. M. El-Bakly, H. M. Abdel-Rahman, R. A. Salah Eldin, and E. El-Demerdash, “Epigallocatechin-3-gallate pretreatment attenuates doxorubicin-induced cardiotoxicity in rats: a mechanistic study,” Biochemical Pharmacology, vol. 95, no. 3, pp. 145–155, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Dudka, J. Jodynis-Liebert, E. Korobowicz et al., “Activity of NADPH-cytochrome P-450 reductase of the human heart, liver and lungs in the presence of (-)-epigallocatechin gallate, quercetin and resveratrol: an in vitro study,” Basic & Clinical Pharmacology & Toxicology, vol. 97, no. 2, pp. 74–79, 2005. View at Publisher · View at Google Scholar
  43. Z. Liu, X.-D. Song, Y. Xin et al., “Protective effect of chrysoeriol against doxorubicin-induced cardiotoxicity in vitro,” Chinese Medical Journal, vol. 122, no. 21, pp. 2652–2656, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Prasad, A. K. Tyagi, and B. B. Aggarwal, “Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice,” Cancer Research and Treatment, vol. 46, no. 1, pp. 2–18, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Venkatesan, “Curcumin attenuation of acute adriamycin myocardial toxicity in rats,” British Journal of Pharmacology, vol. 124, no. 3, pp. 425–427, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Dayton, K. Selvendiran, S. Meduru et al., “Amelioration of doxorubicin-induced cardiotoxicity by an anticancer-antioxidant dual-function compound, HO-3867,” Journal of Pharmacology and Experimental Therapeutics, vol. 339, no. 2, pp. 350–357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. L. Hosseinzadeh, J. Behravan, F. Mosaffa, G. Bahrami, A. Bahrami, and G. Karimi, “Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species,” Food and Chemical Toxicology, vol. 49, no. 5, pp. 1102–1109, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. A. V. Swamy, S. Gulliaya, A. Thippeswamy, B. C. Koti, and D. V. Manjula, “Cardioprotective effect of curcumin against doxorubicin-induced myocardial toxicity in albino rats,” Indian Journal of Pharmacology, vol. 44, no. 1, pp. 73–77, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Pramanik, N. R. Campbell, S. Das et al., “A composite polymer nanoparticle overcomes multidrug resistance and ameliorates doxorubicin-associated cardiomyopathy,” Oncotarget, vol. 3, no. 6, pp. 640–650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Pramod, S. H. Ansari, and J. Ali, “Eugenol: a natural compound with versatile pharmacological actions,” Natural Product Communications, vol. 5, no. 12, pp. 1999–2006, 2010. View at Google Scholar · View at Scopus
  51. A. A. Fouad and M. T. Yacoubi, “Mechanisms underlying the protective effect of eugenol in rats with acute doxorubicin cardiotoxicity,” Archives of Pharmacal Research, vol. 34, no. 5, pp. 821–828, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. F. A. A. van Acker, E. Boven, K. Kramer, G. R. M. M. Haenen, A. Bast, and W. J. F. van der Vijgh, “Frederine, a new and promising protector against doxorubicin-induced cardiotoxicity,” Clinical Cancer Research, vol. 7, no. 5, pp. 1378–1384, 2001. View at Google Scholar · View at Scopus
  53. F. A. A. van Acker, S. A. B. E. van Acker, K. Kramer, G. R. M. M. Haenen, A. Bast, and W. J. F. van der Vijgh, “7-Monohydroxyethylrutoside protects against chronic doxorubicin-induced cardiotoxicity when administered only once per week,” Clinical Cancer Research, vol. 6, no. 4, pp. 1337–1341, 2000. View at Google Scholar · View at Scopus
  54. S. A. B. E. van Acker, E. Boven, K. Kuiper et al., “Monohydroxyethylrutoside, a dose-dependent cardioprotective agent, does not affect the antitumor activity of doxorubicin,” Clinical Cancer Research, vol. 3, no. 10, pp. 1747–1754, 1997. View at Google Scholar · View at Scopus
  55. A. A. Oyagbemi, A. B. Saba, and O. I. Azeez, “Molecular targets of [6]-gingerol: its potential roles in cancer chemoprevention,” Biofactors, vol. 36, no. 3, pp. 169–178, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. W. M. El-Bakly, M. L. Louka, A. M. El-Halawany, and M. F. Schaalan, “6-Gingerol ameliorated doxorubicin-induced cardiotoxicity: role of nuclear factor kappa B and protein glycation,” Cancer Chemotherapy and Pharmacology, vol. 70, no. 6, pp. 833–841, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. S. F. Nabavi, A. Sureda, S. Habtemariam, and S. M. Nabavi, “Ginsenoside Rd and ischemic stroke; a short review of literatures,” Journal of Ginseng Research, vol. 39, no. 4, pp. 299–303, 2015. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Wang, P. Yu, H. Gou et al., “Cardioprotective effects of 20(S)-ginsenoside Rh2 against doxorubicin-induced cardiotoxicity in vitro and in vivo,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 506214, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. C.-T. Chen, Z.-H. Wang, C.-C. Hsu, H.-H. Lin, and J.-H. Chen, “In vivo protective effects of diosgenin against doxorubicin-induced cardiotoxicity,” Nutrients, vol. 7, no. 6, pp. 4938–4954, 2015. View at Publisher · View at Google Scholar · View at Scopus
  60. F. Zhou, G. Hao, J. Zhang et al., “Protective effect of 23-hydroxybetulinic acid on doxorubicin-induced cardiotoxicity: a correlation with the inhibition of carbonyl reductase-mediated metabolism,” British Journal of Pharmacology, vol. 172, no. 23, pp. 5690–5703, 2015. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Roohbakhsh, H. Parhiz, F. Soltani, R. Rezaee, and M. Iranshahi, “Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases,” Life Sciences, vol. 124, pp. 64–74, 2015. View at Publisher · View at Google Scholar · View at Scopus
  62. I. T. Abdel-Raheem and A. A. Abdel-Ghany, “Hesperidin alleviates doxorubicin-induced cardiotoxicity in rats,” Journal of the Egyptian National Cancer Institute, vol. 21, no. 2, pp. 175–184, 2009. View at Google Scholar · View at Scopus
  63. N. F. Khedr and R. M. Khalil, “Effect of hesperidin on mice bearing Ehrlich solid carcinoma maintained on doxorubicin,” Tumor Biology, vol. 36, no. 12, pp. 9267–9275, 2015. View at Publisher · View at Google Scholar · View at Scopus
  64. P. P. Trivedi, S. Kushwaha, D. N. Tripathi, and G. B. Jena, “Cardioprotective effects of hesperetin against doxorubicin-induced oxidative stress and DNA damage in rat,” Cardiovascular Toxicology, vol. 11, no. 3, pp. 215–225, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Granados-Principal, N. El-Azem, R. Pamplona et al., “Hydroxytyrosol ameliorates oxidative stress and mitochondrial dysfunction in doxorubicin-induced cardiotoxicity in rats with breast cancer,” Biochemical Pharmacology, vol. 90, no. 1, pp. 25–33, 2014. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Sun, G. Sun, X. Meng et al., “Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro,” PLoS ONE, vol. 8, no. 5, Article ID e64526, 2013. View at Publisher · View at Google Scholar · View at Scopus
  67. A. A. Adwas, A. A. Elkhoely, A. M. Kabel, M. N. Abdel-Rahman, and A. A. Eissa, “Anti-cancer and cardioprotective effects of indol-3-carbinol in doxorubicin-treated mice,” Journal of Infection and Chemotherapy, vol. 22, no. 1, pp. 36–43, 2016. View at Publisher · View at Google Scholar
  68. P. Souček, E. Kondrová, J. Heřmánek et al., “New model system for testing effects of flavonoids on doxorubicin-related formation of hydroxyl radicals,” Anti-Cancer Drugs, vol. 22, no. 2, pp. 176–184, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Xiao, G.-B. Sun, B. Sun et al., “Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro,” Toxicology, vol. 292, no. 1, pp. 53–62, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Karimi, M. Ramezani, and A. Abdi, “Protective effects of lycopene and tomato extract against doxorubicin-induced cardiotoxicity,” Phytotherapy Research, vol. 19, no. 10, pp. 912–914, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Yilmaz, A. Atessahin, E. Sahna, I. Karahan, and S. Ozer, “Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity,” Toxicology, vol. 218, no. 2-3, pp. 164–171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. A. L. A. Ferreira, D. M. F. Salvadori, M. C. M. O. Nascimento et al., “Tomato-oleoresin supplement prevents doxorubicin-induced cardiac myocyte oxidative DNA damage in rats,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 631, no. 1, pp. 26–35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. A. L. A. Ferreira, K.-J. Yeum, L. S. Matsubara et al., “Doxorubicin as an antioxidant: maintenance of myocardial levels of lycopene under doxorubicin treatment,” Free Radical Biology and Medicine, vol. 43, no. 5, pp. 740–751, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. K. Sahin, N. Sahin, and O. Kucuk, “Lycopene and chemotherapy toxicity,” Nutrition and Cancer, vol. 62, no. 7, pp. 988–995, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. S.-Q. Wang, X.-Z. Han, X. Li, D.-M. Ren, X.-N. Wang, and H.-X. Lou, “Flavonoids from Dracocephalum tanguticum and their cardioprotective effects against doxorubicin-induced toxicity in H9c2 cells,” Bioorganic & Medicinal Chemistry Letters, vol. 20, no. 22, pp. 6411–6415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. H. Yao, Z. Shang, P. Wang et al., “Protection of luteolin-7-O-glucoside against doxorubicin-induced injury through PTEN/Akt and ERK pathway in H9c2 cells,” Cardiovascular Toxicology, vol. 16, no. 2, pp. 101–110, 2016. View at Publisher · View at Google Scholar
  77. L. D. S. Kok, Y. P. Wong, T. W. Wu, H. C. Chan, T. T. Kwok, and K. P. Fung, “Morin hydrate: a potential antioxidant in minimizing the free-radicals- mediated damage to cardiovascular cells by anti-tumor drugs,” Life Sciences, vol. 67, no. 1, pp. 91–99, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. W. Arozal, F. D. Suyatna, V. Juniantito et al., “The effects of mangiferin (Mangifera indica L) in doxorubicin-induced cardiotoxicity in rats,” Drug Research, vol. 65, no. 11, pp. 574–580, 2015. View at Publisher · View at Google Scholar
  79. F. D. Agustini, W. Arozal, M. Louisa et al., “Cardioprotection mechanism of mangiferin on doxorubicin-induced rats: focus on intracellular calcium regulation,” Pharmaceutical Biology, In press. View at Publisher · View at Google Scholar · View at Scopus
  80. H.-S. Park, J. U.-H. Oh, J. H. Lee, and Y.-J. Lee, “Minor effects of the citrus flavonoids naringin, naringenin and quercetin, on the pharmacokinetics of doxorubicin in rats,” Pharmazie, vol. 66, no. 6, pp. 424–429, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. H. M. Arafa, M. F. Abd-Ellah, and H. F. Hafez, “Abatement by naringenin of doxorubicin-induced cardiac toxicity in rats,” Journal of the Egyptian National Cancer Institute, vol. 17, no. 4, pp. 291–300, 2005. View at Google Scholar · View at Scopus
  82. S. S. Shiromwar and V. R. Chidrawar, “Combined effects of p-coumaric acid and naringenin against doxorubicin-induced cardiotoxicity in rats,” Pharmacognosy Research, vol. 3, no. 3, pp. 214–219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. X. Han, J. Pan, D. Ren, Y. Cheng, P. Fan, and H. Lou, “Naringenin-7-O-glucoside protects against doxorubicin-induced toxicity in H9c2 cardiomyocytes by induction of endogenous antioxidant enzymes,” Food and Chemical Toxicology, vol. 46, no. 9, pp. 3140–3146, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. X. Han, D. Ren, P. Fan, T. Shen, and H. Lou, “Protective effects of naringenin-7-O-glucoside on doxorubicin-induced apoptosis in H9C2 cells,” European Journal of Pharmacology, vol. 581, no. 1-2, pp. 47–53, 2008. View at Publisher · View at Google Scholar
  85. X. Han, S. Gao, Y. Cheng et al., “Protective effect of naringenin-7-O-glucoside against oxidative stress induced by doxorubicin in H9c2 cardiomyocytes,” BioScience Trends, vol. 6, no. 1, pp. 19–25, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. X. Fu, L. Kong, M. Tang et al., “Protective effect of ocotillol against doxorubicin-induced acute and chronic cardiac injury,” Molecular Medicine Reports, vol. 9, no. 1, pp. 360–364, 2014. View at Publisher · View at Google Scholar · View at Scopus
  87. I. Andreadou, M. Papaefthimiou, A. Zira et al., “Metabonomic identification of novel biomarkers in doxorubicin cardiotoxicity and protective effect of the natural antioxidant oleuropein,” NMR in Biomedicine, vol. 22, no. 6, pp. 585–592, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. I. Andreadou, F. Sigala, E. K. Iliodromitis et al., “Acute doxorubicin cardiotoxicity is successfully treated with the phytochemical oleuropein through suppression of oxidative and nitrosative stress,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 3, pp. 549–558, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. I. Andreadou, E. Mikros, K. Ioannidis et al., “Oleuropein prevents doxorubicin-induced cardiomyopathy interfering with signaling molecules and cardiomyocyte metabolism,” Journal of Molecular and Cellular Cardiology, vol. 69, pp. 4–16, 2014. View at Publisher · View at Google Scholar · View at Scopus
  90. H. Xu, Y. Han, M. Zhang, M. Yan, and C. Gao, “Protective role of Osthole on myocardial cell apoptosis induced by doxorubicin in rats,” International Journal of Clinical and Experimental Pathology, vol. 8, no. 9, pp. 10816–10823, 2015. View at Google Scholar
  91. M. H. Abdel-Wahab, M. A. El-Mahdy, M. F. Abd-Ellah, G. K. Helal, F. Khalifa, and F. M. A. Hamada, “Influence of p-coumaric acid on doxorubicin-induced oxidative stress in rat's heart,” Pharmacological Research, vol. 48, no. 5, pp. 461–465, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Panda and A. Kar, “Periplogenin-3-O- -D-Glucopyranosyl -(16)- -D-glucopyaranosyl- -(14) -D-cymaropyranoside, isolated from Aegle marmelos protects doxorubicin induced cardiovascular problems and hepatotoxicity in rats,” Cardiovascular Therapeutics, vol. 27, no. 2, pp. 108–116, 2009. View at Publisher · View at Google Scholar
  93. D.-S. Kim, E.-R. Woo, S.-W. Chae et al., “Plantainoside D protects adriamycin-induced apoptosis in H9c2 cardiac muscle cells via the inhibition of ROS generation and NF-κB activation,” Life Sciences, vol. 80, no. 4, pp. 314–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Khan, S. Varadharaj, J. C. Shobha et al., “C-phycocyanin ameliorates doxorubicin-induced oxidative stress and apoptosis in adult rat cardiomyocytes,” Journal of Cardiovascular Pharmacology, vol. 47, no. 1, pp. 9–20, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Maimoona, I. Naeem, Z. Saddiqe, and K. Jameel, “A review on biological, nutraceutical and clinical aspects of French maritime pine bark extract,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 261–277, 2011. View at Publisher · View at Google Scholar · View at Scopus
  96. N. A. E. Boghdady, “Antioxidant and antiapoptotic effects of proanthocyanidin and ginkgo biloba extract against doxorubicin-induced cardiac injury in rats,” Cell Biochemistry and Function, vol. 31, no. 4, pp. 344–351, 2013. View at Publisher · View at Google Scholar · View at Scopus
  97. S. D. Ray, D. Patel, V. Wong, and D. Bagchi, “In vivo protection of DNA damage associated apoptotic and necrotic cell deaths during acetaminophen-induced nephrotoxicity, amiodarone-induced lung toxicity and doxorubicin-induced cardiotoxicity by a novel IH636 grape seed proanthocyanidin extract,” Research Communications in Molecular Pathology and Pharmacology, vol. 107, no. 1-2, pp. 137–166, 2000. View at Google Scholar · View at Scopus
  98. D. Bagchi, S. D. Ray, M. Bagchi, H. G. Preuss, and S. J. Stohs, “Mechanistic pathways of antioxidant cytoprotection by a novel IH636 grape seed proanthocyanidin extract,” Indian Journal of Experimental Biology, vol. 40, no. 6, pp. 717–726, 2002. View at Google Scholar · View at Scopus
  99. X.-Y. Zhang, D.-C. Bai, Y.-J. Wu, W.-G. Li, and N.-F. Liu, “Proanthocyanidin from grape seeds enhances anti-tumor effect of doxorubicin both in vitro and in vivo,” Pharmazie, vol. 60, no. 7, pp. 533–538, 2005. View at Google Scholar · View at Scopus
  100. E. Demirkaya, A. Avci, V. Kesik et al., “Cardioprotective roles of aged garlic extract, grape seed proanthocyanidin, and hazelnut on doxorubicin-induced cardiotoxicity,” Canadian Journal of Physiology and Pharmacology, vol. 87, no. 8, pp. 633–640, 2009. View at Publisher · View at Google Scholar · View at Scopus
  101. C. Cal, H. Garban, A. Jazirehi, C. Yeh, Y. Mizutani, and B. Bonavida, “Resveratrol and cancer: chemoprevention, apoptosis, and chemo-immunosensitizing activities,” Current Medicinal Chemistry—Anti-Cancer Agents, vol. 3, no. 2, pp. 77–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  102. Z. Cao and Y. Li, “Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury,” European Journal of Pharmacology, vol. 489, no. 1-2, pp. 39–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. E. Tatlidede, Ö. Şehirli, A. Velioğlu-Öğün et al., “Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage,” Free Radical Research, vol. 43, no. 3, pp. 195–205, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. G. Y. Wang, Y. M. Wang, L. N. Zhang et al., “Effect of resveratrol on heart function of rats with adriamycin-induced heart failure,” Zhongguo Zhong Yao Za Zhi, vol. 32, no. 15, pp. 1563–1565, 2007. View at Google Scholar
  105. E. D. Brookins Danz, J. Skramsted, N. Henry, J. A. Bennett, and R. S. Keller, “Resveratrol prevents doxorubicin cardiotoxicity through mitochondrial stabilization and the Sirt1 pathway,” Free Radical Biology and Medicine, vol. 46, no. 12, pp. 1589–1597, 2009. View at Publisher · View at Google Scholar · View at Scopus
  106. C. Zhang, Y. Feng, S. Qu et al., “Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53,” Cardiovascular Research, vol. 90, no. 3, pp. 538–545, 2011. View at Publisher · View at Google Scholar · View at Scopus
  107. X. Xu, K. Chen, S. Kobayashi, D. Timm, and Q. Liang, “Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy,” Journal of Pharmacology and Experimental Therapeutics, vol. 341, no. 1, pp. 183–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Wang, P. Song, and M.-H. Zou, “Inhibition of AMP-activated protein kinase α (AMPKα) by doxorubicin accentuates genotoxic stress and cell death in mouse embryonic fibroblasts and cardiomyocytes: role of p53 and SIRT1,” The Journal of Biological Chemistry, vol. 287, no. 11, pp. 8001–8012, 2012. View at Publisher · View at Google Scholar · View at Scopus
  109. C.-Y. Chen, J.-H. Jang, M.-H. Li, and Y.-J. Surh, “Resveratrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells,” Biochemical and Biophysical Research Communications, vol. 331, no. 4, pp. 993–1000, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Gu, Z.-P. Song, D.-M. Gui, W. Hu, Y.-G. Chen, and D.-D. Zhang, “Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in lymphoma nude mice by heme oxygenase-1 induction,” Cardiovascular Toxicology, vol. 12, no. 4, pp. 341–349, 2012. View at Publisher · View at Google Scholar · View at Scopus
  111. F. A. Pinarli, N. N. Turan, F. G. Pinarli et al., “Resveratrol and adipose-derived mesenchymal stem cells are effective in the prevention and treatment of doxorubicin cardiotoxicity in rats,” Pediatric Hematology and Oncology, vol. 30, no. 3, pp. 226–238, 2013. View at Publisher · View at Google Scholar · View at Scopus
  112. V. W. Dolinsky, K. J. Rogan, M. M. Sung et al., “Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice,” American Journal of Physiology—Endocrinology and Metabolism, vol. 305, no. 2, pp. E243–E253, 2013. View at Publisher · View at Google Scholar · View at Scopus
  113. M. G. Novelle, D. Wahl, C. Diéguez, M. Bernier, and R. de Cabo, “Resveratrol supplementation: where are we now and where should we go?” Ageing Research Reviews, vol. 21, 15 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  114. P. A. Janeesh and A. Abraham, “Robinin modulates doxorubicin-induced cardiac apoptosis by TGF-Î21 signaling pathway in Sprague Dawley rats,” Biomedicine & Pharmacotherapy, vol. 68, no. 8, pp. 989–998, 2014. View at Google Scholar
  115. D.-S. Kim, H.-R. Kim, E.-R. Woo, S.-T. Hong, H.-J. Chae, and S.-W. Chae, “Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase,” Biochemical Pharmacology, vol. 70, no. 7, pp. 1066–1078, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. Š. Chlopčíková, J. Psotová, P. Miketová, J. Soušek, V. Lichnovský, and V. Šimánek, “Chemoprotective effect of plant phenolics against anthracycline-induced toxicity on rat cardiomyocytes part II. Caffeic, chlorogenic and rosmarinic acids,” Phytotherapy Research, vol. 18, no. 5, pp. 408–413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. B. Jiang, L. Zhang, M. Li et al., “Salvianolic acids prevent acute doxorubicin cardiotoxicity in mice through suppression of oxidative stress,” Food and Chemical Toxicology, vol. 46, no. 5, pp. 1510–1515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. T.-J. Lin, G.-T. Liu, Y. Liu, and G.-Z. Xu, “Protection by salvianolic acid A against adriamycin toxicity on rat heart mitochondria,” Free Radical Biology and Medicine, vol. 12, no. 5, pp. 347–351, 1992. View at Publisher · View at Google Scholar · View at Scopus
  119. L. Li, Q. Pan, W. Han, Z. Liu, L. Li, and X. Hu, “Schisandrin B prevents doxorubicin-induced cardiotoxicity via enhancing glutathione redox cycling,” Clinical Cancer Research, vol. 13, no. 22, pp. 6753–6760, 2007. View at Publisher · View at Google Scholar · View at Scopus
  120. F. Che, Y. Liu, and C. Xu, “Prevention and treatment of doxorubicin-induced cardiotoxicity by dexrazoxane and schisandrin B in rabbits,” International Journal of Toxicology, vol. 30, no. 6, pp. 681–689, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. R. A. Thandavarayan, V. V. Giridharan, S. Arumugam et al., “Schisandrin b prevents doxorubicin induced cardiac dysfunction by modulation of DNA damage, oxidative stress and inflammation through inhibition of mapk/p53 signaling,” PLoS ONE, vol. 10, no. 3, Article ID e0119214, 2015. View at Publisher · View at Google Scholar · View at Scopus
  122. Y. Xu, Z. Liu, J. Sun et al., “Schisandrin B prevents doxorubicin-induced chronic cardiotoxicity and enhances its anticancer activity in vivo,” PLoS ONE, vol. 6, no. 12, Article ID e28335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  123. X.-L. Wang, X. Wang, L.-L. Xiong et al., “Salidroside improves doxorubicin-induced cardiac dysfunction by suppression of excessive oxidative stress and cardiomyocyte apoptosis,” Journal of Cardiovascular Pharmacology, vol. 62, no. 6, pp. 512–523, 2013. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Su, Q. Li, Y. liu et al., “Sesamin ameliorates doxorubicin-induced cardiotoxicity: involvement of Sirt1 and Mn-SOD pathway,” Toxicology Letters, vol. 224, no. 2, pp. 257–263, 2014. View at Publisher · View at Google Scholar · View at Scopus
  125. A. Chennuru and M. T. S. Saleem, “Antioxidant, lipid lowering, and membrane stabilization effect of sesamol against doxorubicin-induced cardiomyopathy in experimental rats,” BioMed Research International, vol. 2013, Article ID 934239, 5 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  126. A. Raskovic, N. Stilinovic, J. Kolarovic, V. Vasovic, S. Vukmirovic, and M. Mikov, “The protective effects of silymarin against doxorubicin-induced cardiotoxicity and hepatotoxicity in rats,” Molecules, vol. 16, no. 10, pp. 8601–8613, 2011. View at Google Scholar
  127. C. A. Houghton, R. G. Fassett, and J. S. Coombes, “Sulforaphane: translational research from laboratory bench to clinic,” Nutrition Reviews, vol. 71, no. 11, pp. 709–726, 2013. View at Publisher · View at Google Scholar · View at Scopus
  128. B. Li, D. S. Kim, R. K. Yadav, H. R. Kim, and H. J. Chae, “Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells,” International Journal of Molecular Medicine, vol. 36, no. 1, pp. 53–64, 2015. View at Publisher · View at Google Scholar · View at Scopus
  129. P. Singh, R. Sharma, K. McElhanon, C. D. Allen, J. K. Megyesi, and H. Bene, “Sulforaphane protects the heart from doxorubicin-induced toxicity,” Free Radical Biology and Medicine, vol. 86, pp. 90–101, 2015. View at Publisher · View at Google Scholar
  130. H.-L. Tian, T. Yu, N.-N. Xu et al., “A novel compound modified from tanshinone inhibits tumor growth in vivo via activation of the intrinsic apoptotic pathway,” Cancer Letters, vol. 297, no. 1, pp. 18–30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. G.-Y. Zhou, B.-L. Zhao, J.-W. Hou, G.-E. Ma, and W.-J. Xin, “Protective effects of sodium tanshinone IIA sulphonate against adriamycin-induced lipid peroxidation in mice hearts in vivo and in vitro,” Pharmacological Research, vol. 40, no. 6, pp. 487–491, 1999. View at Publisher · View at Google Scholar · View at Scopus
  132. J. Gao, G. Yang, R. Pi et al., “Tanshinone IIA protects neonatal rat cardiomyocytes from adriamycin-induced apoptosis,” Translational Research, vol. 151, no. 2, pp. 79–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  133. B. Jiang, L. Zhang, Y. Wang et al., “Tanshinone IIA sodium sulfonate protects against cardiotoxicity induced by doxorubicin in vitro and in vivo,” Food and Chemical Toxicology, vol. 47, no. 7, pp. 1538–1544, 2009. View at Publisher · View at Google Scholar · View at Scopus
  134. H.-J. Hong, J.-C. Liu, P.-Y. Chen, J.-J. Chen, P. Chan, and T.-H. Cheng, “Tanshinone IIA prevents doxorubicin-induced cardiomyocyte apoptosis through Akt-dependent pathway,” International Journal of Cardiology, vol. 157, no. 2, pp. 174–179, 2012. View at Publisher · View at Google Scholar · View at Scopus
  135. S.-H. Zhang, W.-Q. Wang, and J.-L. Wang, “Protective effect of tetrahydroxystilbene glucoside on cardiotoxicity induced by doxorubicin in vitro and in vivo,” Acta Pharmacologica Sinica, vol. 30, no. 11, pp. 1479–1487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  136. C. C. Woo, S. Y. Loo, V. Gee et al., “Anticancer activity of thymoquinone in breast cancer cells: possible involvement of PPAR-γ pathway,” Biochemical Pharmacology, vol. 82, no. 5, pp. 464–475, 2011. View at Publisher · View at Google Scholar · View at Scopus
  137. O. A. Al-Shabanah, O. A. Badary, M. N. Nagi, N. M. Al-Gharably, A. C. Al-Rikabi, and A. M. Al-Bekairi, “Thymoquinone protects against doxorubicin-induced cardiotoxicity without compromising its antitumor activity,” Journal of Experimental and Clinical Cancer Research, vol. 17, no. 2, pp. 193–198, 1998. View at Google Scholar · View at Scopus
  138. M. N. Nagi and M. A. Mansour, “Protective effect of thymoquinone against doxorubicin-induced cardiotoxicity in rats: a possible mechanism of protection,” Pharmacological Research, vol. 41, no. 3, pp. 283–289, 2000. View at Publisher · View at Google Scholar · View at Scopus
  139. R. K. Brown, G. Wilson, M. A. Tucci, and H. A. Benghuzzi, “The effects of thymoquinone and Doxorubicin on leukemia and cardiomyocyte cell lines,” Biomedical Sciences Instrumentation, vol. 50, pp. 391–396, 2014. View at Google Scholar
  140. M. Xu, L. Sheng, X. Zhu, S. Zeng, D. Chi, and G.-J. Zhang, “Protective effect of tetrandrine on doxorubicin-induced cardiotoxicity in rats,” Tumori, vol. 96, no. 3, pp. 460–464, 2010. View at Google Scholar · View at Scopus
  141. C.-L. Dai, H.-Y. Xiong, L.-F. Tang et al., “Tetrandrine achieved plasma concentrations capable of reversing MDR in vitro and had no apparent effect on doxorubicin pharmacokinetics in mice,” Cancer Chemotherapy and Pharmacology, vol. 60, no. 5, pp. 741–750, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. R. Deng, “Therapeutic effects of guggul and its constituent guggulsterone: cardiovascular benefits,” Cardiovascular Drug Reviews, vol. 25, no. 4, pp. 375–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  143. W.-C. Wang, Y.-H. Uen, M.-L. Chang et al., “Protective effect of guggulsterone against cardiomyocyte injury induced by doxorubicin in vitro,” BMC Complementary and Alternative Medicine, vol. 12, no. 1, article 138, 10 pages, 2012. View at Google Scholar
  144. K. Chatterjee, J. Zhang, R. Tao, N. Honbo, and J. S. Karliner, “Vincristine attenuates doxorubicin cardiotoxicity,” Biochemical and Biophysical Research Communications, vol. 373, no. 4, pp. 555–560, 2008. View at Publisher · View at Google Scholar · View at Scopus
  145. L. Xi, “Visnagin—a new protectant against doxorubicin cardiotoxicity? Inhibition of mitochondrial malate dehydrogenase 2 (MDH2) and beyond,” Annals of Translational Medicine, vol. 4, no. 4, p. 65, 2016. View at Publisher · View at Google Scholar
  146. Y. Liu, A. Asnani, L. Zou et al., “Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase,” Science Translational Medicine, vol. 6, no. 266, Article ID 266ra170, 2014. View at Publisher · View at Google Scholar · View at Scopus
  147. P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, “Bioavailability of curcumin: problems and promises,” Molecular Pharmaceutics, vol. 4, no. 6, pp. 807–818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  148. M. Airoldi, D. Amadori, S. Barni et al., “Clinical activity and cardiac tolerability of non-pegylated liposomal doxorubicin in breast cancer: a synthetic review,” Tumori, vol. 97, no. 6, pp. 690–692, 2011. View at Publisher · View at Google Scholar · View at Scopus