Table of Contents Author Guidelines Submit a Manuscript

A corrigendum for this article has been published. To view the corrigendum, please click here.

Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 5846865, 13 pages
Research Article

Protective Effects of Soy Oligopeptides in Ultraviolet B-Induced Acute Photodamage of Human Skin

Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

Received 5 February 2016; Revised 26 May 2016; Accepted 1 June 2016

Academic Editor: Renata Szymanska

Copyright © 2016 Bing-rong Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Aim. We explored the effects of soy oligopeptides (SOP) in ultraviolet B- (UVB-) induced acute photodamage of human skin in vivo and foreskin ex vivo. Methods. We irradiated the forearm with 1.5 minimal erythemal dose (MED) of UVB for 3 consecutive days, establishing acute photodamage of skin, and topically applied SOP. Erythema index (EI), melanin index, stratum corneum hydration, and transepidermal water loss were measured by using Multiprobe Adapter 9 device. We irradiated foreskin ex vivo with the same dose of UVB (180 mJ/cm2) for 3 consecutive days and topically applied SOP. Sunburn cells were detected by using hematoxylin and eosin staining. Apoptotic cells were detected by using terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Cyclobutane pyrimidine dimers (CPDs), p53 protein, Bax protein, and Bcl-2 protein were detected by using immunohistochemical staining. Results. Compared with UVB group, UVB-irradiated skin with topically applied SOP showed significantly decreased EI. Compared with UVB group, topical SOP significantly increased Bcl-2 protein expression and decreased CPDs-positive cells, sunburn cells, apoptotic cells, p53 protein expression, and Bax protein expressions in the epidermis of UVB-irradiated foreskin. Conclusion. Our study demonstrated that topical SOP can protect human skin against UVB-induced photodamage.