Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 7361613, 22 pages
http://dx.doi.org/10.1155/2016/7361613
Review Article

Overview of Alzheimer’s Disease and Some Therapeutic Approaches Targeting Aβ by Using Several Synthetic and Herbal Compounds

1Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005, India
2Department of Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA

Received 12 August 2015; Accepted 5 November 2015

Academic Editor: Anne-Laure Bulteau

Copyright © 2016 Sandeep Kumar Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiological Reviews, vol. 81, no. 2, pp. 741–766, 2001. View at Google Scholar · View at Scopus
  2. L. E. Hebert, P. A. Scherr, J. L. Bienias, D. A. Bennett, and D. A. Evans, “Alzheimer disease in the US population: prevalence estimates using the 2000 census,” Archives of Neurology, vol. 60, no. 8, pp. 1119–1122, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. P. S. Mathuranath, P. J. Cherian, R. Mathew et al., “Dementia in Kerala, South India: prevalence and influence of age, education and gender,” International Journal of Geriatric Psychiatry, vol. 25, no. 3, pp. 290–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Chandra, R. Pandav, H. H. Dodge et al., “Incidence of Alzheimer's disease in a rural community in India. The Indo-US study,” Neurology, vol. 57, no. 6, pp. 985–989, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Yoshitake, Y. Kiyohara, I. Kato et al., “Incidence and risk factors of vascular dementia and Alzheimer's disease in a defined elderly Japanese population: the Hisayama study,” Neurology, vol. 45, no. 6, pp. 1161–1168, 1995. View at Publisher · View at Google Scholar · View at Scopus
  6. R. L. Ernst and J. W. Hay, “Economic research on Alzheimer disease: a review of the literature,” Alzheimer Disease and Associated Disorders, vol. 11, supplement 6, pp. 135–145, 1997. View at Google Scholar · View at Scopus
  7. C. Haass and D. J. Selkoe, “Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid β-peptide,” Nature Reviews Molecular Cell Biology, vol. 8, no. 2, pp. 101–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Thinakaran and E. H. Koo, “Amyloid precursor protein trafficking, processing, and function,” The Journal of Biological Chemistry, vol. 283, no. 44, pp. 29615–29619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. Alzheimer's Association 2010, Web, 2010, http://alz.org.
  10. Z. S. Khachaturian and T. S. Radebaugh, Alzheimer's Disease: Cause(s), Diagnosis, Treatment, and Care, CRC, Boca Raton, Fla, USA, 1996.
  11. M. Goedert and M. G. Spillantini, “A century of Alzheimer's disease,” Science, vol. 314, no. 5800, pp. 777–781, 2006. View at Google Scholar
  12. T. A. Bayer, O. Wirths, K. Majtényi et al., “Key factors in Alzheimer's disease: beta-amyloid precursor protein processing, metabolism and intraneuronal transport,” Brain Pathology, vol. 11, no. 1, pp. 1–11, 2001. View at Google Scholar · View at Scopus
  13. J. Hardy and D. J. Selkoe, “The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics,” Science, vol. 297, no. 5580, pp. 353–356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. J. Carter and C. F. Lippa, “β-amyloid, neuronal death and Alzheimer's disease,” Current Molecular Medicine, vol. 1, no. 6, pp. 733–737, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. J. L. Cummings, H. V. Vinters, G. M. Cole, and Z. S. Khachaturian, “Alzheimer's disease: etiologies, pathophysiology, cognitive reserve, and treatment opportunities,” Neurology, vol. 51, supplement 1, pp. S2–S17, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. Alzheimer Europe, March 2004, http://www.alzheimer-europe.org/?lm1=D8105B21BD2C.
  17. K. Blennow, M. J. de Leon, and H. Zetterberg, “Alzheimer's disease,” The Lancet, vol. 368, no. 9533, pp. 387–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. E. G. Gray, M. Paula-Barbosa, and A. Roher, “Alzheimer's disease: paired helical filaments and cytomembranes,” Neuropathology and Applied Neurobiology, vol. 13, no. 2, pp. 91–110, 1987. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Mudher and S. Lovestone, “Alzheimer's disease—do tauists and baptists finally shake hands?” Trends in Neurosciences, vol. 25, no. 1, pp. 22–26, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. D. R. Williams, “Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau,” Internal Medicine Journal, vol. 36, no. 10, pp. 652–660, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. P. T. Francis, A. M. Palmer, M. Snape, and G. K. Wilcock, “The cholinergic hypothesis of Alzheimer's disease: a review of progress,” Journal of Neurology Neurosurgery and Psychiatry, vol. 66, no. 2, pp. 137–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. A. V. Terry Jr. and J. J. Buccafusco, “The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development,” Journal of Pharmacology and Experimental Therapeutics, vol. 306, no. 3, pp. 821–827, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Auld Daniel, “Amyloidβ peptides as direct cholinergic neuromodulators: a missing link?” Trends in Neurosciences, vol. 21, pp. 43–49, 1998. View at Google Scholar
  24. R. T. Bartus, R. L. Dean III, B. Beer, and A. S. Lippa, “The cholinergic hypothesis of geriatric memory dysfunction,” Science, vol. 217, no. 4558, pp. 408–414, 1982. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Davies and A. J. F. Maloney, “Selective loss of central cholinergic neurons in Alzheimer's disease,” The Lancet, vol. 308, no. 8000, p. 1403, 1976. View at Publisher · View at Google Scholar · View at Scopus
  26. Z. X. Shen, “Brain cholinesterases: II, The molecular and cellular basis of Alzheimer's disease,” Medical Hypotheses, vol. 63, no. 2, pp. 308–321, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. R. H. Swerdlow and S. M. Khan, “A ‘mitochondrial cascade hypothesis’ for sporadic Alzheimer's disease,” Medical Hypotheses, vol. 63, no. 1, pp. 8–20, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. R. H. Swerdlow and S. J. Kish, “Mitochondria in Alzheimer's disease,” International Review of Neurobiology, vol. 53, pp. 341–385, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. G. E. Gibson, K.-F. R. Sheu, and J. P. Blass, “Abnormalities of mitochondrial enzymes in Alzheimer disease,” Journal of Neural Transmission, vol. 105, no. 8-9, pp. 855–870, 1998. View at Publisher · View at Google Scholar · View at Scopus
  30. W. D. Parker Jr. and J. K. Parks, “Cytochrome c oxidase in Alzheimer's disease brain: purification and characterization,” Neurology, vol. 45, no. 31, pp. 482–486, 1995. View at Publisher · View at Google Scholar · View at Scopus
  31. Q. Ding, S. Martin, E. Dimayuga, A. J. Bruce-Keller, and J. N. Keller, “LMP2 knock-out mice have reduced proteasome activities and increased levels of oxidatively damaged proteins,” Antioxidants & Redox Signaling, vol. 8, no. 1-2, pp. 130–135, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. R. H. Swerdlow, “Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies,” Journal of Neuroscience Research, vol. 85, no. 15, pp. 3416–3428, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. G. G. Glenner and C. W. Wong, “Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein,” Biochemical and Biophysical Research Communications, vol. 122, no. 3, pp. 1131–1135, 1984. View at Publisher · View at Google Scholar · View at Scopus
  34. G. G. Glenner and C. W. Wong, “Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein,” Biochemical and Biophysical Research Communications, vol. 120, no. 3, pp. 885–890, 1984. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Kang, H.-G. Lemaire, A. Unterbeck et al., “The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor,” Nature, vol. 325, no. 6106, pp. 733–736, 1987. View at Publisher · View at Google Scholar · View at Scopus
  36. M. J. Owen, L. A. James, J. A. Hardy, R. Williamson, and A. M. Goate, “Physical mapping around the Alzheimer disease locus on the proximal long arm of chromosome 21,” The American Journal of Human Genetics, vol. 46, no. 2, pp. 316–322, 1990. View at Google Scholar · View at Scopus
  37. A. Rovelet-Lecrux, D. Hannequin, G. Raux et al., “APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy,” Nature Genetics, vol. 38, no. 1, pp. 24–26, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Sleegers, N. Brouwers, I. Gijselinck et al., “APP duplication is sufficient to cause early onset Alzheimer's dementia with cerebral amyloid angiopathy,” Brain, vol. 129, no. 11, pp. 2977–2983, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. J. A. Hardy and G. A. Higgins, “Alzheimer's disease: the amyloid cascade hypothesis,” Science, vol. 256, no. 5054, pp. 184–185, 1992. View at Publisher · View at Google Scholar · View at Scopus
  40. D. J. Selkoe, “The molecular pathology of Alzheimer's disease,” Neuron, vol. 6, no. 4, pp. 487–498, 1991. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Cruts and C. Van Broeckhoven, “Presenilin mutations in Alzheimer's disease,” Human Mutation, vol. 11, no. 3, pp. 183–190, 1998. View at Google Scholar · View at Scopus
  42. N. Suzuki, T. T. Cheung, X.-D. Cai et al., “An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants,” Science, vol. 264, no. 5163, pp. 1336–1340, 1994. View at Publisher · View at Google Scholar · View at Scopus
  43. S. G. Younkin, “Evidence that Aβ42 is the real culprit in Alzheimer's disease,” Annals of Neurology, vol. 37, no. 3, pp. 287–288, 1995. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Bentahir, O. Nyabi, J. Verhamme et al., “Presenilin clinical mutations can affect gamma-secretase activity by different mechanisms,” Journal of Neurochemistry, vol. 96, no. 3, pp. 732–742, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. T. A. Bayer, R. Cappai, C. L. Masters, K. Beyreuther, and G. Multhaup, “It all sticks together—the APP-related family of proteins and Alzheimer's disease,” Molecular Psychiatry, vol. 4, no. 6, pp. 524–528, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. E. S. Oh, A. V. Savonenko, J. F. King et al., “Amyloid precursor protein increases cortical neuron size in transgenic mice,” Neurobiology of Aging, vol. 30, no. 8, pp. 1238–1244, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Zheng, M. Jiang, M. E. Trumbauer et al., “β-amyloid precursor protein-deficient mice show reactive gliosis and decreased locomotor activity,” Cell, vol. 81, no. 4, pp. 525–531, 1995. View at Publisher · View at Google Scholar · View at Scopus
  48. G. R. Dawson, G. R. Seabrook, H. Zheng et al., “Age-related cognitive deficits, impaired long-term potentiation and reduction in synaptic marker density in mice lacking the β-amyloid precursor protein,” Neuroscience, vol. 90, no. 1, pp. 1–13, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. C. S. Von Koch, H. Zheng, H. Chen et al., “Generation of APLP2 KO mice and early postnatal lethality in APLP2/APP double KO mice,” Neurobiology of Aging, vol. 18, no. 6, pp. 661–669, 1997. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Heber, J. Herms, V. Gajic et al., “Mice with combined gene knock-outs reveal essential and partially redundant functions of amyloid precursor protein family members,” Journal of Neuroscience, vol. 20, no. 21, pp. 7951–7963, 2000. View at Google Scholar · View at Scopus
  51. A. Lorenzo, M. Yuan, Z. Zhang et al., “Amyloid β interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer's disease,” Nature Neuroscience, vol. 3, no. 5, pp. 460–464, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. F. C. Lourenço, V. Galvan, J. Fombonne et al., “Netrin-1 interacts with amyloid precursor protein and regulates amyloid-β production,” Cell Death & Differentiation, vol. 16, no. 5, pp. 655–663, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. A. Ho and T. C. Südhof, “Binding of F-spondin to amyloid-β precursor protein: A candidate amyloid-β precursor protein ligand that modulates amyloid-β precursor protein cleavage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 8, pp. 2548–2553, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Zheng and E. H. Koo, “The amyloid precursor protein: beyond amyloid,” Molecular Neurodegeneration, vol. 1, article 5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. H. Meziane, J.-C. Dodart, C. Mathis et al., “Memory-enhancing effects of secreted forms of the β-amyloid precursor protein in normal and amnestic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 21, pp. 12683–12688, 1998. View at Publisher · View at Google Scholar · View at Scopus
  56. J.-M. Roch, E. Masliah, A.-C. Roch-Levecq et al., “Increase of synaptic density and memory retention by a peptide representing the trophic domain of the amyloid β/A4 protein precursor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 16, pp. 7450–7454, 1994. View at Publisher · View at Google Scholar · View at Scopus
  57. S. S. Mok, G. Sberna, D. Heffernan et al., “Expression and analysis of heparin-binding regions of the amyloid precursor protein of Alzheimer's disease,” FEBS Letters, vol. 415, no. 3, pp. 303–307, 1997. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Xu, D. Sweeney, R. Wang et al., “Generation of Alzheimer β-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 8, pp. 3748–3752, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. T. Hartmann, S. C. Bieger, B. Brühl et al., “Distinct sites of intracellular production for Alzheimer's disease Aβ 40/42 amyloid peptides,” Nature Medicine, vol. 3, no. 9, pp. 1016–1020, 1997. View at Publisher · View at Google Scholar
  60. J. P. Greenfield, J. Tsai, G. K. Gouras et al., “Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer β-amyloid peptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 2, pp. 742–747, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. S. S. Sisodia, “Beta-amyloid precursor protein cleavage by a membrane-bound protease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 13, pp. 6075–6079, 1992. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Nordstedt, G. L. Caporaso, J. Thyberg, S. E. Gandy, and P. Greengard, “Identification of the Alzheimer β/A4 amyloid precursor protein in clathrin-coated vesicles purified from PC12 cells,” Journal of Biological Chemistry, vol. 268, no. 1, pp. 608–612, 1993. View at Google Scholar · View at Scopus
  63. G. L. Caporaso, K. Takei, S. E. Gandy et al., “Morphologic and biochemical analysis of the intracellular trafficking of the Alzheimer β/A4 amyloid precursor protein,” The Journal of Neuroscience, vol. 14, no. 5, pp. 3122–3138, 1994. View at Google Scholar · View at Scopus
  64. C. Haass, A. Y. Hung, M. G. Schlossmacher, D. B. Teplow, and D. J. Selkoe, “β-amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms,” Journal of Biological Chemistry, vol. 268, no. 5, pp. 3021–3024, 1993. View at Google Scholar · View at Scopus
  65. K. Furukawa, B. L. Sopher, R. E. Rydel et al., “Increased activity-regulating and neuroprotective efficacy of α-secretase-derived secreted amyloid precursor protein conferred by a C-terminal heparin-binding domain,” Journal of Neurochemistry, vol. 67, no. 5, pp. 1882–1896, 1996. View at Google Scholar · View at Scopus
  66. S. Bandyopadhyay, L. E. Goldstein, D. K. Lahiri, and J. T. Rogers, “Role of the APP non-amyloidogenic signaling pathway and targeting α-secretase as an alternative drug target for treatment of Alzheimer's diseases,” Current Medicinal Chemistry, vol. 14, no. 27, pp. 2848–2864, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. F. Kamenetz, T. Tomita, H. Hsieh et al., “APP processing and synaptic function,” Neuron, vol. 37, no. 6, pp. 925–937, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Cupers, I. Orlans, K. Craessaerts, W. Annaert, and B. De Strooper, “The amyloid precursor protein (APP)-cytoplasmic fragment generated by γ-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture,” Journal of Neurochemistry, vol. 78, no. 5, pp. 1168–1178, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. S. S. Hébert, L. Serneels, A. Tolia et al., “Regulated intramembrane proteolysis of amyloid precursor protein and regulation of expression of putative target genes,” EMBO Reports, vol. 7, no. 7, pp. 739–745, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. P. Westermark, M. D. Benson, J. N. Buxbaum et al., “A primer of amyloid nomenclature,” Amyloid, vol. 14, no. 3, pp. 179–183, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. G. M. Shankar, S. Li, T. H. Mehta et al., “Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory,” Nature Medicine, vol. 14, no. 8, pp. 837–842, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. D. Burdick, B. Soreghan, M. Kwon et al., “Assembly and aggregation properties of synthetic Alzheimer's A4/β amyloid peptide analogs,” Journal of Biological Chemistry, vol. 267, no. 1, pp. 546–554, 1992. View at Google Scholar · View at Scopus
  73. D. R. Borchelt, G. Thinakaran, C. B. Eckman et al., “Familial Alzheimer's disease linked presenilin 1 variants elevate Abeta1-42/1-40 ratio in vitro and in-vivo,” Neuron, vol. 17, pp. 1005–1013, 1996. View at Google Scholar
  74. J. T. Jarrett, E. P. Berger, and P. T. Lansbury Jr., “The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease,” Biochemistry, vol. 32, no. 18, pp. 4693–4697, 1993. View at Publisher · View at Google Scholar · View at Scopus
  75. G. K. Gouras, J. Tsai, J. Naslund et al., “Intraneuronal Aβ42 accumulation in human brain,” American Journal of Pathology, vol. 156, no. 1, pp. 15–20, 2000. View at Publisher · View at Google Scholar · View at Scopus
  76. K. A. Gyure, R. Durham, W. F. Stewart, J. E. Smialek, and J. C. Troncoso, “Intraneuronal Aβ-amyloid precedes development of amyloid plaques in Down syndrome,” Archives of Pathology and Laboratory Medicine, vol. 125, no. 4, pp. 489–492, 2001. View at Google Scholar · View at Scopus
  77. C. Mori, E. T. Spooner, K. E. Wisniewski et al., “Intraneuronal Aβ42 accumulation in Down syndrome brain,” Amyloid, vol. 9, no. 2, pp. 88–102, 2002. View at Google Scholar · View at Scopus
  78. S. Oddo, A. Caccamo, J. D. Shepherd et al., “Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Aβ and synaptic dysfunction,” Neuron, vol. 39, no. 3, pp. 409–421, 2003. View at Publisher · View at Google Scholar · View at Scopus
  79. S. Oddo, A. Caccamo, I. F. Smith, K. N. Green, and F. M. LaFerla, “A dynamic relationship between intracellular and extracellular pools of Aβ,” American Journal of Pathology, vol. 168, no. 1, pp. 184–194, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Oakley, S. L. Cole, S. Logan et al., “Intraneuronal β-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer's disease mutations: potential factors in amyloid plaque formation,” Journal of Neuroscience, vol. 26, no. 40, pp. 10129–10140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. J. España, L. Giménez-Llort, J. Valero et al., “Intraneuronal β-amyloid accumulation in the amygdala enhances fear and anxiety in Alzheimer's disease transgenic mice,” Biological Psychiatry, vol. 67, no. 6, pp. 513–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Yu, E. Nwabuisi-Heath, K. Laxton, and M. J. Ladu, “Endocytic pathways mediating oligomeric Aβ42 neurotoxicity,” Molecular Neurodegeneration, vol. 5, article 19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. R. P. Friedrich, K. Tepper, R. Rönicke et al., “Mechanism of amyloid plaque formation suggests an intracellular basis of Aβ pathogenicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 1942–1947, 2010. View at Publisher · View at Google Scholar
  84. P. Seubert, C. Vigo-Pelfrey, F. Esch et al., “Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids,” Nature, vol. 359, no. 6393, pp. 325–327, 1992. View at Publisher · View at Google Scholar · View at Scopus
  85. C. Haass, M. G. Schlossmacher, A. Y. Hung et al., “Amyloid β-peptide is produced by cultured cells during normal metabolism,” Nature, vol. 359, no. 6393, pp. 322–325, 1992. View at Publisher · View at Google Scholar · View at Scopus
  86. D. Puzzo, L. Privitera, E. Leznik et al., “Picomolar amyloid-β positively modulates synaptic plasticity and memory in hippocampus,” The Journal of Neuroscience, vol. 28, no. 53, pp. 14537–14545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. A. N. Minniti, D. L. Rebolledo, P. M. Grez et al., “Intracellular amyloid formation in muscle cells of Aβ-transgenic Caenorhabditis elegans: determinants and physiological role in copper detoxification,” Molecular Neurodegeneration, vol. 4, article 2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  88. C. G. Glabe, “Structural classification of toxic amyloid oligomers,” Journal of Biological Chemistry, vol. 283, no. 44, pp. 29639–29643, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. D. B. Teplow, “Structural and kinetic features of amyloid β-protein fibrillogenesis,” Amyloid, vol. 5, no. 2, pp. 121–142, 1998. View at Publisher · View at Google Scholar · View at Scopus
  90. B. P. Tseng, W. P. Esler, C. B. Clish et al., “Deposition of monomeric, not oligomeric, Aβ mediates growth of Alzheimer's disease amyloid plaques in human brain preparations,” Biochemistry, vol. 38, no. 32, pp. 10424–10431, 1999. View at Publisher · View at Google Scholar · View at Scopus
  91. D. M. Walsh, B. P. Tseng, R. E. Rydel, M. B. Podlisny, and D. J. Selkoe, “The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain,” Biochemistry, vol. 39, no. 35, pp. 10831–10839, 2000. View at Publisher · View at Google Scholar · View at Scopus
  92. J. Ma, A. Yee, H. B. Brewer Jr., S. Das, and H. Potter, “Amyloid-associated proteins α1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer β-protein into filaments,” Nature, vol. 372, no. 6501, pp. 92–94, 1994. View at Publisher · View at Google Scholar · View at Scopus
  93. M. Enya, M. Morishima-Kawashima, M. Yoshimura et al., “Appearance of sodium dodecyl sulfate-stable amyloid β-protein (Aβ) dimer in the cortex during aging,” American Journal of Pathology, vol. 154, no. 1, pp. 271–279, 1999. View at Publisher · View at Google Scholar · View at Scopus
  94. G. Bitan, B. Tarus, S. S. Vollers et al., “A molecular switch in amyloid assembly: Met35 and amyloid β-protein oligomerization,” Journal of the American Chemical Society, vol. 125, no. 50, pp. 15359–15365, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. G. Bitan, S. S. Vollers, and D. B. Teplow, “Elucidation of primary structure elements controlling early amyloid β-protein oligomerization,” Journal of Biological Chemistry, vol. 278, no. 37, pp. 34882–34889, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. M. P. Lambert, A. K. Barlow, B. A. Chromy et al., “Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 11, pp. 6448–6453, 1998. View at Publisher · View at Google Scholar · View at Scopus
  97. J. D. Harper, S. S. Wong, C. M. Lieber, and P. T. Lansbury Jr., “Observation of metastable Aβ amyloid protofibrils by atomic force microscopy,” Chemistry and Biology, vol. 4, no. 2, pp. 119–125, 1997. View at Publisher · View at Google Scholar · View at Scopus
  98. D. M. Walsh, A. Lomakin, G. B. Benedek, M. M. Condron, and D. B. Teplow, “Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate,” The Journal of Biological Chemistry, vol. 272, no. 35, pp. 22364–22372, 1997. View at Publisher · View at Google Scholar · View at Scopus
  99. W. Yong, A. Lomakin, M. D. Kirkitadze et al., “Structure determination of micelle-like intermediates in amyloid β-protein fibril assembly by using small angle neutron scattering,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 1, pp. 150–154, 2002. View at Google Scholar
  100. M. D. Kirkitadze, G. Bitan, and D. B. Teplow, “Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies,” Journal of Neuroscience Research, vol. 69, no. 5, pp. 567–577, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. M. D. Kirkitadze, M. M. Condron, and D. B. Teplow, “Identification and characterization of key kinetic intermediates in amyloid β-protein fibrillogenesis,” Journal of Molecular Biology, vol. 312, no. 5, pp. 1103–1119, 2001. View at Publisher · View at Google Scholar · View at Scopus
  102. D. J. Selkoe, “Alzheimer's disease is a synaptic failure,” Science, vol. 298, no. 5594, pp. 789–791, 2002. View at Publisher · View at Google Scholar · View at Scopus
  103. R. Cappai and K. J. Barnham, “Delineating the mechanism of Alzheimer's disease Aβ peptide neurotoxicity,” Neurochemical Research, vol. 33, no. 3, pp. 526–532, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Sandberg, L. M. Luheshi, S. Söllvander et al., “Stabilization of neurotoxic Alzheimer amyloid-beta oligomers by protein engineering,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 35, pp. 15595–15600, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. R. Kayed, E. Head, F. Sarsoza et al., “Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers,” Molecular Neurodegeneration, vol. 2, no. 2, article 18, 2007. View at Publisher · View at Google Scholar · View at Scopus
  106. S. Chimon and Y. Ishii, “Capturing intermediate structures of Alzheimer's β-amyloid, Aβ(1–40), by solid-state NMR spectroscopy,” Journal of the American Chemical Society, vol. 127, no. 39, pp. 13472–13473, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. L. Yu, R. Edalji, J. E. Harlan et al., “Structural characterization of a soluble amyloid β-peptide oligomer,” Biochemistry, vol. 48, no. 9, pp. 1870–1877, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. N. Arispe, “Architecture of the Alzheimer’s AβP ion channel pore,” Journal of Membrane Biology, vol. 197, no. 1, pp. 33–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  109. A. Quist, I. Doudevski, H. Lin et al., “Amyloid ion channels: a common structural link for protein-misfolding disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10427–10432, 2005. View at Publisher · View at Google Scholar · View at Scopus
  110. Y. Verdier and B. Penke, “Binding sites of amyloid beta-peptide in cell plasma membrane and implications for Alzheimer's disease,” Current Protein & Peptide Science, vol. 5, no. 1, pp. 19–31, 2004. View at Publisher · View at Google Scholar · View at Scopus
  111. E. M. Snyder, Y. Nong, C. G. Almeida et al., “Regulation of NMDA receptor trafficking by amyloid-β,” Nature Neuroscience, vol. 8, no. 8, pp. 1051–1058, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. C. R. Jack Jr., D. S. Knopman, W. J. Jagust et al., “Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade,” The Lancet Neurology, vol. 9, no. 1, pp. 119–128, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. E.-M. Mandelkow and E. Mandelkow, “Tau in Alzheimer's disease,” Trends in Cell Biology, vol. 8, no. 11, pp. 425–427, 1998. View at Publisher · View at Google Scholar · View at Scopus
  114. D. H. Geschwind, “Tau phosphorylation, tangles, and neurodegeneration: the chicken or the egg?” Neuron, vol. 40, no. 3, pp. 457–460, 2003. View at Publisher · View at Google Scholar · View at Scopus
  115. L. M. Ittner, Y. D. Ke, F. Delerue et al., “Dendritic function of tau mediates amyloid-β toxicity in alzheimer's disease mouse models,” Cell, vol. 142, no. 3, pp. 387–397, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. A. Nunomura, G. Perry, G. Aliev et al., “Oxidative damage is the earliest event in Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 8, pp. 759–767, 2001. View at Google Scholar · View at Scopus
  117. C. L. Masters, G. Simms, and N. A. Weinman, “Amyloid plaque core protein in Alzheimer disease and Down syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 12, pp. 4245–4249, 1985. View at Publisher · View at Google Scholar · View at Scopus
  118. B. Cheng, H. Gong, H. Xiao, R. B. Petersen, L. Zheng, and K. Huang, “Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases,” Biochimica et Biophysica Acta—General Subjects, vol. 1830, no. 10, pp. 4860–4871, 2013. View at Publisher · View at Google Scholar · View at Scopus
  119. O. O. Olubiyi and B. Strodel, “Structures of the amyloid β-peptides Aβ1-40 and Aβ1-42 as influenced by pH and a D-peptide,” Journal of Physical Chemistry B, vol. 116, no. 10, pp. 3280–3291, 2012. View at Publisher · View at Google Scholar · View at Scopus
  120. T. Luhrs, C. Ritter, M. Adrian et al., “3D structure of Alzheimer's amyloid-beta(1-42) fibrils,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 48, pp. 17342–17347, 2005. View at Google Scholar
  121. C. Velez-Vega and F. A. Escobedo, “Characterizing the structural behavior of selected Aβ-42 monomers with different solubilities,” Journal of Physical Chemistry B, vol. 115, no. 17, pp. 4900–4910, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. A. T. Petkova, R. D. Leapman, Z. Guo, W.-M. Yau, M. P. Mattson, and R. Tycko, “Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils,” Science, vol. 307, no. 5707, pp. 262–265, 2005. View at Publisher · View at Google Scholar · View at Scopus
  123. A. R. A. Ladiwala, J. C. Lin, S. S. Bale et al., “Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Aβ into off-pathway conformers,” The Journal of Biological Chemistry, vol. 285, no. 31, pp. 24228–24237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  124. D. D. Soto-Ortega, B. P. Murphy, F. J. Gonzalez-Velasquez et al., “Inhibition of amyloid-β aggregation by coumarin analogs can be manipulated by functionalization of the aromatic center,” Bioorganic and Medicinal Chemistry, vol. 19, no. 8, pp. 2596–2602, 2011. View at Publisher · View at Google Scholar · View at Scopus
  125. S. A. Moore, T. N. Huckerby, G. L. Gibson et al., “Both the D-(+) and L-(−) enantiomers of nicotine inhibit Aβ aggregation and cytotoxicity,” Biochemistry, vol. 43, no. 3, pp. 819–826, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. T. L. Lowe, A. Strzelec, L. L. Kiessling, and R. M. Murphy, “Structure-function relationships for inhibitors of β-amyloid toxicity containing the recognition sequence KLVFF,” Biochemistry, vol. 40, no. 26, pp. 7882–7889, 2001. View at Publisher · View at Google Scholar · View at Scopus
  127. M. H. Viet, S. T. Ngo, N. S. Lam, and M. S. Li, “Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity,” The Journal of Physical Chemistry B, vol. 115, no. 22, pp. 7433–7446, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. M. Sarasa and P. Pesini, “Natural non-trasgenic animal models for research in alzheimer's disease,” Current Alzheimer Research, vol. 6, no. 2, pp. 171–178, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. C. D. Link, “Invertebrate models of Alzheimer's disease,” Genes, Brain and Behavior, vol. 4, no. 3, pp. 147–156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Wentzell and D. Kretzschmar, “Alzheimer's Disease and tauopathy studies in flies and worms,” Neurobiology of Disease, vol. 40, no. 1, pp. 21–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. J. L. Cummings, T. Morstorf, and K. Zhong, “Alzheimer’s disease drug-development pipeline: few candidates, frequent failures,” Alzheimer's Research & Therapy, vol. 6, article 37, 2014. View at Publisher · View at Google Scholar
  132. D. Games, D. Adams, R. Alessandrini et al., “Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein,” Nature, vol. 373, no. 6514, pp. 523–527, 1995. View at Publisher · View at Google Scholar · View at Scopus
  133. K. Hsiao, P. Chapman, S. Nilsen et al., “Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice,” Science, vol. 274, no. 5284, pp. 99–102, 1996. View at Publisher · View at Google Scholar · View at Scopus
  134. C. Stürchler-Pierrat, D. Abramowski, M. Duke et al., “Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 24, pp. 13287–13292, 1997. View at Publisher · View at Google Scholar · View at Scopus
  135. D. Van Dam, E. Vloeberghs, D. Abramowski, M. Staufenbiel, and P. P. De Deyn, “APP23 mice as a model of Alzheimer's disease: an example of a transgenic approach to modeling a CNS disorder,” CNS Spectrums, vol. 10, no. 3, pp. 207–222, 2005. View at Google Scholar · View at Scopus
  136. J. M. Basak and D. M. Holtzman, “APP-based transgenic models of Alzheimer’s dementia: the PDAPP model,” in Animal Models of Dementia, P. P. De Deyn and D. Van Dam, Eds., pp. 371–385, Springer, New York, NY, USA, 2010. View at Google Scholar
  137. R. M. J. Deacon, “APP-based transgenic models of Alzheimer dementia: the Tg2576 mouse,” in Animal Models of Dementia, P. P. De Deyn and D. Van Dam, Eds., pp. 387–398, Springer, New York, NY, USA, 2010. View at Google Scholar
  138. D. Van Dam and P. P. De Deyn, “The APP23 mouse model for Alzheimer's disease,” in Animal Models of Dementia, P. P. De Deyn and D. Van Dam, Eds., pp. 399–413, Springer Science+Business Media, New York, NY, USA, 2010. View at Google Scholar
  139. E. McGowan, J. Eriksen, and M. Hutton, “A decade of modeling Alzheimer's disease in transgenic mice,” Trends in Genetics, vol. 22, no. 5, pp. 281–289, 2006. View at Publisher · View at Google Scholar · View at Scopus
  140. D. Van Dam and P. P. De Deyn, “Drug discovery in dementia: the role of rodent models,” Nature Reviews Drug Discovery, vol. 5, no. 11, pp. 956–970, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. M. Sy, M. Kitazawa, and F. LaFerla, “The 3xTg-AD mouse model: reproducing and modulating plaque and tangle pathology,” in Animal Models of Dementia, P. P. De Deyn and D. Van Dam, Eds., vol. 48 of Neuromethods, pp. 469–482, Springer Science+Business Media, New York, NY, USA, 2011. View at Publisher · View at Google Scholar
  142. S. Brenner, “The genetics of Caenorhabditis elegans,” Genetics, vol. 77, no. 1, pp. 71–94, 1974. View at Google Scholar · View at Scopus
  143. D. Levitan and I. Greenwald, “Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans s182 Alzheimer's disease gene,” Nature, vol. 377, no. 6547, pp. 351–354, 1995. View at Publisher · View at Google Scholar · View at Scopus
  144. X. Li and I. Greenwald, “HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 22, pp. 12204–12209, 1997. View at Publisher · View at Google Scholar · View at Scopus
  145. I. Daigle and C. Li, “apl-1, a Caenorhabditis elegans gene encoding a protein related to the human β-amyloid protein precursor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 24, pp. 12045–12049, 1993. View at Publisher · View at Google Scholar · View at Scopus
  146. C. D. Link, “Expression of human beta-amyloid peptide in transgenic Caenorhabditis elegans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 20, pp. 9368–9372, 1995. View at Publisher · View at Google Scholar
  147. C. D. Link, “C. elegans models of age-associated neurodegenerative diseases: lessons from transgenic worm models of Alzheimer's disease,” Experimental Gerontology, vol. 41, no. 10, pp. 1007–1013, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. Y. Wu, Z. Wu, P. Butko et al., “Amyloid-β-induced pathological behaviors are suppressed by Ginkgo biloba extract EGB 761 and ginkgolides in transgenic Caenorhabditis elegans,” Journal of Neuroscience, vol. 26, no. 50, pp. 13102–13113, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. B. C. Kraemer, B. Zhang, J. B. Leverenz, J. H. Thomas, J. Q. Trojanowski, and G. D. Schellenberg, “Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 17, pp. 9980–9985, 2003. View at Publisher · View at Google Scholar · View at Scopus
  150. D. C. Crowther, K. J. Kinghorn, E. Miranda et al., “Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer's disease,” Neuroscience, vol. 132, no. 1, pp. 123–135, 2005. View at Publisher · View at Google Scholar · View at Scopus
  151. B. Reisberg, R. Doody, A. Stöffler, F. Schmitt, S. Ferris, and H. J. Möbius, “Memantine in moderate-to-severe Alzheimer's disease,” The New England Journal of Medicine, vol. 348, no. 14, pp. 1333–1341, 2003. View at Publisher · View at Google Scholar · View at Scopus
  152. B. L. Apostol, A. Kazantsev, S. Raffioni et al., “A cell-based assay for aggregation inhibitors as therapeutics of polyglutamine-repeat disease and validation in Drosophila,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 5950–5955, 2003. View at Publisher · View at Google Scholar · View at Scopus
  153. I. Sánchez, C. Mahlke, and J. Yuan, “Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders,” Nature, vol. 421, no. 6921, pp. 373–379, 2003. View at Publisher · View at Google Scholar · View at Scopus
  154. I. Greeve, D. Kretzschmar, J.-A. Tschäpe et al., “Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila,” Journal of Neuroscience, vol. 24, no. 16, pp. 3899–3906, 2004. View at Publisher · View at Google Scholar · View at Scopus
  155. S. K. Singh, Studies on therapeutic potential of synthetic as well as herbal compounds for Alzheimer's disease using transgenic Drosophila model [Doctoral thesis], Banaras Hindu University, Varanasi, India, 2015.
  156. M. P. Cuajungco and G. J. Lees, “Zinc and Alzheimer's disease: is there a direct link?” Brain Research Reviews, vol. 23, no. 3, pp. 219–236, 1997. View at Publisher · View at Google Scholar · View at Scopus
  157. D. Beauchemin and R. Kisilevsky, “A method based on ICP-MS for the analysis of Alzheimer’s amyloid plaques,” Analytical Chemistry, vol. 70, no. 5, pp. 1026–1029, 1998. View at Publisher · View at Google Scholar · View at Scopus
  158. M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell, and W. R. Markesbery, “Copper, iron and zinc in Alzheimer's disease senile plaques,” Journal of the Neurological Sciences, vol. 158, no. 1, pp. 47–52, 1998. View at Publisher · View at Google Scholar · View at Scopus
  159. X. Huang, M. P. Cuajungco, C. S. Atwood, R. D. Moir, R. E. Tanzi, and A. I. Bush, “Alzheimer's disease, β-amyloid protein and zinc,” The Journal of Nutrition, vol. 130, no. 5, pp. 1488S–1492S, 2000. View at Google Scholar · View at Scopus
  160. J. Constantinidis, Mineral and Metal Neurotoxicology, edited by: M. Yasui, M. Strong, K. Ota, A. Verity, CRC Press, Boca Raton, Fla, USA, 1997.
  161. A. Rolfs and M. A. Hediger, “Metal ion transporters in mammals: structure, function and pathological implications,” Journal of Physiology, vol. 518, no. 1, pp. 1–12, 1999. View at Publisher · View at Google Scholar · View at Scopus
  162. S. K. Singh, P. Sinha, L. Mishra, and S. Srikrishna, “Neuroprotective role of a novel copper chelator against Aβ42 induced neurotoxicity,” International Journal of Alzheimer's Disease, vol. 2013, Article ID 567128, 9 pages, 2013. View at Publisher · View at Google Scholar
  163. F. Hane, G. Tran, S. J. Attwood, and Z. Leonenko, “Cu2+ affects amyloid-β (1–42) aggregation by increasing peptide-peptide binding forces,” PLoS ONE, vol. 8, no. 3, Article ID e59005, 2013. View at Publisher · View at Google Scholar
  164. M. Innocenti, E. Salvietti, M. Guidotti et al., “Trace copper(II) or zinc(II) ions drastically modify the aggregation behavior of amyloid-β1-42: an AFM study,” Journal of Alzheimer's Disease, vol. 19, no. 4, pp. 1323–1329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. S. Azimi and A. Rauk, “On the involvement of copper binding to the N-terminus of the amyloid beta peptide of Alzheimer's disease: a computational study on model systems,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 539762, 15 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  166. V. Minicozzi, F. Stellato, M. Comai et al., “Identifying the minimal copper- and zinc-binding site sequence in amyloid-β peptides,” Journal of Biological Chemistry, vol. 283, no. 16, pp. 10784–10792, 2008. View at Publisher · View at Google Scholar · View at Scopus
  167. P. Faller and C. Hureau, “Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide,” Dalton Transactions, vol. 7, pp. 1080–1094, 2009. View at Publisher · View at Google Scholar · View at Scopus
  168. C. J. Sarell, S. R. Wilkinson, and J. H. Viles, “Substoichiometric levels of Cu2+ ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-beta from Alzheimer disease,” The Journal of Biological Chemistry, vol. 285, no. 53, pp. 41533–41540, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. C. D. Syme and J. H. Viles, “Solution 1H NMR investigation of Zn2+ and Cd2+ binding to amyloid-beta peptide (Aβ) of Alzheimer's disease,” Biochimica et Biophysica Acta—Proteins and Proteomics, vol. 1764, no. 2, pp. 246–256, 2006. View at Publisher · View at Google Scholar · View at Scopus
  170. Y. Zhang, S. Akilesh, and D. E. Wilcox, “Isothermal titration calorimetry measurements of Ni(II) and Cu(II) binding to His, GlyGlyHis, HisGlyHis, and bovine serum albumin: a critical evaluation,” Inorganic Chemistry, vol. 39, no. 14, pp. 3057–3064, 2000. View at Publisher · View at Google Scholar · View at Scopus
  171. S.-T. Liu, G. Howlett, and C. J. Barrow, “Histidine-13 is a crucial residue in the zinc ion-induced aggregation of the Aβ peptide of Alzheimer's disease,” Biochemistry, vol. 38, no. 29, pp. 9373–9378, 1999. View at Publisher · View at Google Scholar · View at Scopus
  172. D.-S. Yang, J. McLaurin, K. Qin, D. Westaway, and P. E. Fraser, “Examining the zinc binding site of the amyloid-β peptide,” European Journal of Biochemistry, vol. 267, no. 22, pp. 6692–6698, 2000. View at Publisher · View at Google Scholar · View at Scopus
  173. K. Suzuki, T. Miura, and H. Takeuchi, “Inhibitory effect of copper(II) on zinc(II)-induced aggregation of amyloid β-peptide,” Biochemical and Biophysical Research Communications, vol. 285, no. 4, pp. 991–996, 2001. View at Publisher · View at Google Scholar · View at Scopus
  174. R. A. Cherny, C. S. Atwood, M. E. Xilinas et al., “Treatment with a copper-zinc chelator markedly and rapidly inhibits β-amyloid accumulation in Alzheimer's disease transgenic mice,” Neuron, vol. 30, no. 3, pp. 665–676, 2001. View at Publisher · View at Google Scholar · View at Scopus
  175. A. K. Tickler, J. D. Wade, and F. Separovic, “The role of Aβ peptides in Alzheimer's disease,” Protein and Peptide Letters, vol. 12, no. 6, pp. 513–519, 2005. View at Publisher · View at Google Scholar · View at Scopus
  176. X. Huang, C. S. Atwood, M. A. Hartshorn et al., “The Aβ peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction,” Biochemistry, vol. 38, no. 24, pp. 7609–7616, 1999. View at Publisher · View at Google Scholar · View at Scopus
  177. M. P. Cuajungco, L. E. Goldstein, A. Nunomura et al., “Evidence that the β-amyloid plaques of Alzheimer's disease represent the redox-silencing and entombment of Aβ by zinc,” The Journal of Biological Chemistry, vol. 275, no. 26, pp. 19439–19442, 2000. View at Publisher · View at Google Scholar · View at Scopus
  178. C. Opazo, X. Huang, R. A. Cherny et al., “Metalloenzyme-like activity of Alzheimer's disease β-amyloid: Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2,” The Journal of Biological Chemistry, vol. 277, no. 43, pp. 40302–40308, 2002. View at Publisher · View at Google Scholar · View at Scopus
  179. G. D. Ciccotosto, D. Tew, C. C. J. Curtain et al., “Enhanced toxicity and cellular binding of a modified amyloid β peptide with a methionine to valine substitution,” Journal of Biological Chemistry, vol. 279, no. 41, pp. 42528–42534, 2004. View at Publisher · View at Google Scholar · View at Scopus
  180. Y. Sagara, R. Dargusch, F. G. Klier, D. Schubert, and C. Behl, “Increased antioxidant enzyme activity in amyloid β protein-resistant cells,” Journal of Neuroscience, vol. 16, no. 2, pp. 497–505, 1996. View at Google Scholar · View at Scopus
  181. L. E. Scott and C. Orvig, “Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease,” Chemical Reviews, vol. 109, no. 10, pp. 4885–4910, 2009. View at Publisher · View at Google Scholar · View at Scopus
  182. C. Hureau, I. Sasaki, E. Gras, and P. Faller, “Two functions, one molecule: a metal-binding and a targeting moiety to combat Alzheimer's disease,” ChemBioChem, vol. 11, no. 7, pp. 838–953, 2010. View at Publisher · View at Google Scholar · View at Scopus
  183. J. J. Braymer, A. S. DeToma, J.-S. Choi, K. S. Ko, and M. H. Lim, “Recent development of bifunctional small molecules to study metal-amyloid-β species in Alzheimer's disease,” International Journal of Alzheimer's Disease, vol. 2011, Article ID 623051, 9 pages, 2011. View at Publisher · View at Google Scholar
  184. L. R. Perez and K. J. Franz, “Minding metals: tailoring multifunctional chelating agents for neurodegenerative disease,” Dalton Transactions, vol. 39, no. 9, pp. 2177–2187, 2010. View at Publisher · View at Google Scholar · View at Scopus
  185. A. Lakatos, É. Zsigó, O. D. Hollender et al., “Two pyridine derivatives as potential Cu(II) and Zn(II) chelators in therapy for Alzheimer's disease,” Dalton Transactions, vol. 39, no. 5, pp. 1302–1315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  186. D. E. Green, M. L. Bowen, L. E. Scott et al., “In vitro studies of 3-hydroxy-4-pyridinones and their glycosylated derivatives as potential agents for Alzheimer's disease,” Dalton Transactions, vol. 39, no. 6, pp. 1604–1615, 2010. View at Publisher · View at Google Scholar · View at Scopus
  187. A. M. Haque, M. Hashimoto, M. Katakura, Y. Tanabe, Y. Hara, and O. Shido, “Long-term administration of green tea catechins improves spatial cognition learning ability in rats,” Journal of Nutrition, vol. 136, no. 4, pp. 1043–1047, 2006. View at Google Scholar · View at Scopus
  188. S. Kuriyama, A. Hozawa, K. Ohmori et al., “Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project,” The American Journal of Clinical Nutrition, vol. 83, no. 2, pp. 355–361, 2006. View at Google Scholar · View at Scopus
  189. K. Unno, F. Takabayashi, T. Kishido, and N. Oku, “Suppressive effect of green tea catechins on morphologic and functional regression of the brain in aged mice with accelerated senescence (SAMP10),” Experimental Gerontology, vol. 39, no. 7, pp. 1027–1034, 2004. View at Publisher · View at Google Scholar · View at Scopus
  190. Y. Wang, L. Wang, J. Wu, and J. Cai, “The in vivo synaptic plasticity mechanism of EGb 761-induced enhancement of spatial learning and memory in aged rats,” British Journal of Pharmacology, vol. 148, no. 2, pp. 147–153, 2006. View at Publisher · View at Google Scholar · View at Scopus
  191. K. A. Youdim and J. A. Joseph, “A possible emerging role of phytochemicals in improving age-related neurological dysfunctions: a multiplicity of effects,” Free Radical Biology and Medicine, vol. 30, no. 6, pp. 583–594, 2001. View at Publisher · View at Google Scholar · View at Scopus
  192. A. N. Sokolov, M. A. Pavlova, S. Klosterhalfen, and P. Enck, “Chocolate and the brain: neurobiological impact of cocoa flavanols on cognition and behavior,” Neuroscience & Biobehavioral Reviews, vol. 37, no. 10, part 2, pp. 2445–2453, 2013. View at Publisher · View at Google Scholar · View at Scopus
  193. G. R. Beecher, “Overview of dietary flavonoids: nomenclature, occurrence and intake,” Journal of Nutrition, vol. 133, no. 10, pp. 3248S–3254S, 2003. View at Google Scholar · View at Scopus
  194. J. P. E. Spencer, “Beyond antioxidants: the cellular and molecular interactions of flavonoids and how these underpin their actions on the brain,” Proceedings of the Nutrition Society, vol. 69, no. 2, pp. 244–260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  195. J. P. E. Spencer, “The impact of flavonoids on memory: physiological and molecular considerations,” Chemical Society Reviews, vol. 38, no. 4, pp. 1152–1161, 2009. View at Publisher · View at Google Scholar · View at Scopus
  196. S. K. Singh, R. Gaur, A. Kumar, R. Fatima, L. Mishra, and S. Srikrishna, “The flavonoid derivative 2-(4′benzyloxyphenyl)-3-hydroxy-chromen-4-one protects against Aβ42-induced neurodegeneration in transgenic drosophila: insights from in silico and in vivo studies,” Neurotoxicity Research, vol. 26, no. 4, pp. 331–350, 2014. View at Publisher · View at Google Scholar · View at Scopus
  197. T. B. Joseph, S. W. J. Wang, X. Liu et al., “Disposition of flavonoids via enteric recycling: enzyme stability affects characterization of prunetin glucuronidation across species, organs, and UGT isoforms,” Molecular Pharmaceutics, vol. 4, no. 6, pp. 883–894, 2007. View at Publisher · View at Google Scholar · View at Scopus
  198. S. Ramos, “Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention,” Journal of Nutritional Biochemistry, vol. 18, no. 7, pp. 427–442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  199. S. A. R. Paiva and R. M. Russell, “β-carotene and other carotenoids as antioxidants,” Journal of the American College of Nutrition, vol. 18, no. 5, pp. 426–433, 1999. View at Publisher · View at Google Scholar · View at Scopus
  200. M. Y. Hong, N. P. Seeram, Y. Zhang, and D. Heber, “Anticancer effects of Chinese red yeast rice versus monacolin K alone on colon cancer cells,” Journal of Nutritional Biochemistry, vol. 19, no. 7, pp. 448–458, 2008. View at Publisher · View at Google Scholar · View at Scopus
  201. D. J. Newman and G. M. Cragg, “Natural products as sources of new drugs over the 30 years from 1981 to 2010,” Journal of Natural Products, vol. 75, no. 3, pp. 311–335, 2012. View at Publisher · View at Google Scholar · View at Scopus
  202. S. Asadi, A. Ahmadiani, M. A. Esmaeili, A. Sonboli, N. Ansari, and F. Khodagholi, “In vitro antioxidant activities and an investigation of neuroprotection by six Salvia species from Iran: a comparative study,” Food and Chemical Toxicology, vol. 48, no. 5, pp. 1341–1349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  203. A. Kuruuzum-Uz, H. Suleyman, E. Cadirci, Z. Guvenalp, and L. Omur Demirezer, “Investigation on anti-inflammatory and antiulcer activities of Anchusa azurea extracts and their major constituent rosmarinic acid,” Zeitschrift fur Naturforschung C: Journal of Biosciences, vol. 67, no. 7-8, pp. 360–366, 2012. View at Publisher · View at Google Scholar · View at Scopus
  204. M. Dumont and M. F. Beal, “Neuroprotective strategies involving ROS in Alzheimer disease,” Free Radical Biology and Medicine, vol. 51, no. 5, pp. 1014–1026, 2011. View at Publisher · View at Google Scholar · View at Scopus
  205. J. Kim, H. J. Lee, and K. W. Lee, “Naturally occurring phytochemicals for the prevention of Alzheimer's disease,” Journal of Neurochemistry, vol. 112, no. 6, pp. 1415–1430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  206. N. B. Chauhan and J. Sandoval, “Amelioration of early cognitive deficits by aged garlic extract in Alzheimer's transgenic mice,” Phytotherapy Research, vol. 21, no. 7, pp. 629–640, 2007. View at Publisher · View at Google Scholar · View at Scopus
  207. K. Ono, M. M. Condron, L. Ho et al., “Effects of grape seed-derived polyphenols on amyloid beta-protein self-assembly and cytotoxicity,” The Journal of Biological Chemistry, vol. 283, no. 47, pp. 32176–32187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  208. D. S. Kim, J.-Y. Kim, and Y. S. Han, “Alzheimer's disease drug discovery from herbs: neuroprotectivity from β-amyloid (1–42) insult,” Journal of Alternative and Complementary Medicine, vol. 13, no. 3, pp. 333–340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  209. J. F. Morton, “Folk uses and commercial exploitation of Aloe leaf pulp,” Economic Botany, vol. 15, no. 4, pp. 311–319, 1961. View at Publisher · View at Google Scholar · View at Scopus
  210. D. Yim, S. S. Kang, D. W. Kim, S. H. Kim, H. S. Lillehoj, and W. Min, “Protective effects of Aloe vera-based diets in Eimeria maxima-infected broiler chickens,” Experimental Parasitology, vol. 127, no. 1, pp. 322–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  211. T. Reynolds and A. C. Dweck, “Aloe vera leaf gel: a review update,” Journal of Ethnopharmacology, vol. 68, no. 1–3, pp. 3–37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  212. F. Borrelli and A. A. Izzo, “The plant kingdom as a source of anti-ulcer remedies,” Phytotherapy Research, vol. 14, no. 8, pp. 581–591, 2000. View at Publisher · View at Google Scholar
  213. S.-A. Im, Y.-R. Lee, Y.-H. Lee et al., “In vivo evidence of the immunomodulatory activity of orally administered Aloe vera gel,” Archives of Pharmacal Research, vol. 33, no. 3, pp. 451–456, 2010. View at Publisher · View at Google Scholar