Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2016, Article ID 9324085, 14 pages
http://dx.doi.org/10.1155/2016/9324085
Review Article

Therapeutic Potential of Curcumin for the Treatment of Brain Tumors

1Department of Neurosurgery, Wayne State University, Detroit, MI, USA
2Department of Oncology, Wayne State University, Detroit, MI, USA
3Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA

Received 23 July 2016; Accepted 7 September 2016

Academic Editor: Mohamed Essa

Copyright © 2016 Neil V. Klinger and Sandeep Mittal. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Q. T. Ostrom, H. Gittleman, P. Liao et al., “CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011,” Neuro-Oncology, vol. 16, supplement 4, pp. iv1–iv63, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. S.-P. Weathers and M. R. Gilbert, “Advances in treating glioblastoma,” F1000Prime Reports, vol. 6, article 46, 2014. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Stupp, M. E. Hegi, W. P. Mason et al., “Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial,” The Lancet Oncology, vol. 10, no. 5, pp. 459–466, 2009. View at Google Scholar
  4. R. Stupp, W. P. Mason, M. J. Van Den Bent et al., “Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma,” The New England Journal of Medicine, vol. 352, no. 10, pp. 987–996, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. D. R. Johnson, H. E. Leeper, and J. H. Uhm, “Glioblastoma survival in the United States improved after food and drug administration approval of bevacizumab: a population-based analysis,” Cancer, vol. 119, no. 19, pp. 3489–3495, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Stupp, S. Taillibert, A. A. Kanner et al., “Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial,” The Journal of the American Medical Association, vol. 314, no. 23, pp. 2535–2543, 2015. View at Publisher · View at Google Scholar · View at Scopus
  7. B. B. Aggarwal, Y.-J. Surh, and S. Shishodia, The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, Springer, 2007. View at Publisher · View at Google Scholar
  8. H. P. T. Ammon and M. A. Wahl, “Pharmacology of Curcuma longa,” Planta Medica, vol. 57, no. 1, pp. 1–7, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. W.-H. Lee, C.-Y. Loo, M. Bebawy, F. Luk, R. S. Mason, and R. Rohanizadeh, “Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century,” Current Neuropharmacology, vol. 11, no. 4, pp. 338–378, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Goel, A. B. Kunnumakkara, and B. B. Aggarwal, “Curcumin as ‘Curecumin’: from kitchen to clinic,” Biochemical Pharmacology, vol. 75, no. 4, pp. 787–809, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Schaaf, B. Shan, M. Buchfelder et al., “Curcumin acts as anti-tumorigenic and hormone-suppressive agent in murine and human pituitary tumour cells in vitro and in vivo,” Endocrine-Related Cancer, vol. 16, no. 4, pp. 1339–1350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Miller, S. Chen, J. Woodliff, and S. Kansra, “Curcumin (diferuloylmethane) inhibits cell proliferation, induces apoptosis, and decreases hormone levels and secretion in pituitary tumor cells,” Endocrinology, vol. 149, no. 8, pp. 4158–4167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. B. H. Choi, C. G. Kim, Y.-S. Bae, Y. Lim, Y. H. Lee, and S. Y. Shin, “p21Waf1/Cip1 expression by curcumin in U-87MG human glioma cells: role of early growth response-1 expression,” Cancer Research, vol. 68, no. 5, pp. 1369–1377, 2008. View at Google Scholar
  14. M. L. Y. Bangaru, S. Chen, J. Woodliff, and S. Kansra, “Curcumin (diferuloylmethane) induces apoptosis and blocks migration of human medulloblastoma cells,” Anticancer Research, vol. 30, no. 2, pp. 499–504, 2010. View at Google Scholar · View at Scopus
  15. A. Zanotto-Filho, E. Braganhol, K. Klafke et al., “Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas,” Cancer Letters, vol. 358, no. 2, pp. 220–231, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. W. Zhuang, L. Long, B. Zheng et al., “Curcumin promotes differentiation of glioma-initiating cells by inducing autophagy,” Cancer Science, vol. 103, no. 4, pp. 684–690, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Aoki, Y. Takada, S. Kondo, R. Sawaya, B. B. Aggarwal, and Y. Kondo, “Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways,” Molecular Pharmacology, vol. 72, no. 1, pp. 29–39, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Langone, P. R. Debata, J. D. R. Inigo et al., “Coupling to a glioblastoma-directed antibody potentiates antitumor activity of curcumin,” International Journal of Cancer, vol. 135, no. 3, pp. 710–719, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Purkayastha, A. Berliner, S. S. Fernando et al., “Curcumin blocks brain tumor formation,” Brain Research, vol. 1266, pp. 130–138, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. L. Arbiser, N. Klauber, R. Rohan et al., “Curcumin is an in vivo inhibitor of angiogenesis,” Molecular Medicine, vol. 4, no. 6, pp. 376–383, 1998. View at Google Scholar · View at Scopus
  21. S. Bisht, G. Feldmann, S. Soni et al., “Polymeric nanoparticle-encapsulated curcumin (‘nanocurcumin’): a novel strategy for human cancer therapy,” Journal of Nanobiotechnology, vol. 5, article 3, 18 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. M.-S. Woo, S.-H. Jung, S.-Y. Kim et al., “Curcumin suppresses phorbol ester-induced matrix metalloproteinase-9 expression by inhibiting the PKC to MAPK signaling pathways in human astroglioma cells,” Biochemical and Biophysical Research Communications, vol. 335, no. 4, pp. 1017–1025, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S.-Y. Kim, S.-H. Jung, and H.-S. Kim, “Curcumin is a potent broad spectrum inhibitor of matrix metalloproteinase gene expression in human astroglioma cells,” Biochemical and Biophysical Research Communications, vol. 337, no. 2, pp. 510–516, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. S. Bhandarkar and J. L. Arbiser, “Curcumin as an inhibitor of angiogenesis,” in The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease, pp. 185–195, Springer, 2007. View at Google Scholar
  25. D. Thaloor, A. K. Singh, G. S. Sidhu, P. V. Prasad, H. K. Kleinman, and R. K. Maheshwari, “Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by curcumin,” Cell Growth and Differentiation, vol. 9, no. 4, pp. 305–312, 1998. View at Google Scholar · View at Scopus
  26. B. E. Bachmeier, A. G. Nerlich, C. M. Iancu et al., “The chemopreventive polyphenol curcumin prevents hematogenous breast cancer metastases in immunodeficient mice,” Cellular Physiology and Biochemistry, vol. 19, no. 1–4, pp. 137–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Ravindran, S. Prasad, and B. B. Aggarwal, “Curcumin and cancer cells: how many ways can curry kill tumor cells selectively?” The AAPS Journal, vol. 11, no. 3, pp. 495–510, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Sa and T. Das, “Anti cancer effects of curcumin: cycle of life and death,” Cell Division, vol. 3, no. 1, article 14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Hasima and B. B. Aggarwal, “Cancer-linked targets modulated by curcumin,” International Journal of Biochemistry and Molecular Biology, vol. 3, no. 4, pp. 328–351, 2012. View at Google Scholar · View at Scopus
  30. P. Anand, C. Sundaram, S. Jhurani, A. B. Kunnumakkara, and B. B. Aggarwal, “Curcumin and cancer: an ‘old-age’ disease with an ‘age-old’ solution,” Cancer Letters, vol. 267, no. 1, pp. 133–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Hatcher, R. Planalp, J. Cho, F. M. Torti, and S. V. Torti, “Curcumin: from ancient medicine to current clinical trials,” Cellular and Molecular Life Sciences, vol. 65, no. 11, pp. 1631–1652, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Rathore, P. Dohare, S. Varma et al., “Curcuma oil: reduces early accumulation of oxidative product and is anti-apoptogenic in transient focal ischemia in rat brain,” Neurochemical Research, vol. 33, no. 9, pp. 1672–1682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. J.-X. Wu, L.-Y. Zhang, Y.-L. Chen, S.-S. Yu, Y. Zhao, and J. Zhao, “Curcumin pretreatment and post-treatment both improve the antioxidative ability of neurons with oxygen-glucose deprivation,” Neural Regeneration Research, vol. 10, no. 3, pp. 481–489, 2015. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Santel, G. Pflug, N. Y. A. Hemdan et al., “Curcumin inhibits glyoxalase 1—a possible link to its anti-inflammatory and anti-tumor activity,” PLoS ONE, vol. 3, no. 10, Article ID e3508, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Wu, H. Yao, S. Wang, and R. Xu, “DAPK1 modulates a curcumin-induced G2/M arrest and apoptosis by regulating STAT3, NF-κB, and caspase-3 activation,” Biochemical and Biophysical Research Communications, vol. 434, no. 1, pp. 75–80, 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Liu, J. Wu, W. Cao et al., “Curcumin induces G2/M cell cycle arrest in a p53-dependent manner and upregulates ING4 expression in human glioma,” Journal of Neuro-Oncology, vol. 85, no. 3, pp. 263–270, 2007. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Garkavtsev, S. V. Kozin, O. Chernova et al., “The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis,” Nature, vol. 428, no. 6980, pp. 328–332, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Qian, J. Ma, X. Guo et al., “Curcumin enhances the radiosensitivity of U87 cells by inducing DUSP-2 up-regulation,” Cellular Physiology and Biochemistry, vol. 35, no. 4, pp. 1381–1393, 2015. View at Publisher · View at Google Scholar · View at Scopus
  39. B. Pauwels, A. Wouters, M. Peeters, J. B. Vermorken, and F. Lardon, “Role of cell cycle perturbations in the combination therapy of chemotherapeutic agents and radiation,” Future Oncology, vol. 6, no. 9, pp. 1485–1496, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Aravindan, R. Madhusoodhanan, S. Ahmad, D. Johnson, and T. S. Herman, “Curcumin inhibits NFκB mediated radioprotection and modulate apoptosis related genes in human neuroblastoma cells,” Cancer Biology and Therapy, vol. 7, no. 4, pp. 569–576, 2008. View at Google Scholar · View at Scopus
  41. A. K. Khaw, M. P. Hande, G. Kalthur, and M. P. Hande, “Curcumin inhibits telomerase and induces telomere shortening and apoptosis in brain tumour cells,” Journal of Cellular Biochemistry, vol. 114, no. 6, pp. 1257–1270, 2013. View at Google Scholar
  42. T.-Y. Huang, T.-H. Tsai, C.-W. Hsu, and Y.-C. Hsu, “Curcuminoids suppress the growth and induce apoptosis through caspase-3-dependent pathways in glioblastoma multiforme (GBM) 8401 cells,” Journal of Agricultural and Food Chemistry, vol. 58, no. 19, pp. 10639–10645, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Karmakar, N. L. Banik, and S. K. Ray, “Curcumin suppressed anti-apoptotic signals and activated cysteine proteases for apoptosis in human malignant glioblastoma U87MG cells,” Neurochemical Research, vol. 32, no. 12, pp. 2103–2113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. D. W. Davis, D. J. McConkey, J. L. Abbruzzese, and R. S. Herbst, “Surrogate markers in antiangiogenesis clinical trials,” British Journal of Cancer, vol. 89, no. 1, pp. 8–14, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Zanotto-Filho, E. Braganhol, R. Schröder et al., “NFκB inhibitors induce cell death in glioblastomas,” Biochemical Pharmacology, vol. 81, no. 3, pp. 412–424, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. I. Bandey, S.-H. Chiou, A.-P. Huang, J.-C. Tsai, and P.-H. Tu, “Progranulin promotes Temozolomide resistance of glioblastoma by orchestrating DNA repair and tumor stemness,” Oncogene, vol. 34, no. 14, pp. 1853–1864, 2015. View at Publisher · View at Google Scholar · View at Scopus
  47. K. M. Dhandapani, V. B. Mahesh, and D. W. Brann, “Curcumin suppresses growth and chemoresistance of human glioblastoma cells via AP-1 and NFκB transcription factors,” Journal of Neurochemistry, vol. 102, no. 2, pp. 522–538, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Belkaid, I. B. Copland, D. Massillon, and B. Annabi, “Silencing of the human microsomal glucose-6-phosphate translocase induces glioma cell death: potential new anticancer target for curcumin,” FEBS Letters, vol. 580, no. 15, pp. 3746–3752, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. J. Weissenberger, M. Priester, C. Bernreuther et al., “Dietary curcumin attenuates glioma growth in a syngeneic mouse model by inhibition of the JAK1, 2/STAT3 signaling pathway,” Clinical Cancer Research, vol. 16, no. 23, pp. 5781–5795, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. M. H. Elamin, Z. Shinwari, S.-F. Hendrayani et al., “Curcumin inhibits the sonic hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells,” Molecular Carcinogenesis, vol. 49, no. 3, pp. 302–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. W.-Z. Du, Y. Feng, X.-F. Wang et al., “Curcumin suppresses malignant glioma cells growth and induces apoptosis by inhibition of SHH/GLI1 signaling pathway in vitro and vivo,” CNS Neuroscience & Therapeutics, vol. 19, no. 12, pp. 926–936, 2013. View at Publisher · View at Google Scholar · View at Scopus
  52. M. He, Y. Li, L. Zhang et al., “Curcumin suppresses cell proliferation through inhibition of the Wnt/β-catenin signaling pathway in medulloblastoma,” Oncology Reports, vol. 32, no. 1, pp. 173–180, 2014. View at Publisher · View at Google Scholar · View at Scopus
  53. S. J. Lee, C. Krauthauser, V. Maduskuie, P. T. Fawcett, J. M. Olson, and S. A. Rajasekaran, “Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo,” BMC Cancer, vol. 11, article 114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. N. A. A. Thani, B. Sallis, R. Nuttall et al., “Induction of apoptosis and reduction of MMP gene expression in the U373 cell line by polyphenolics in Aronia melanocarpa and by curcumin,” Oncology Reports, vol. 28, no. 4, pp. 1435–1442, 2012. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Tsunoda, G. Kitange, T. Anda et al., “Expression of the constitutively activated RelA/NF-κB in human astrocytic tumors and the in vitro implication in the regulation of urokinase-type plasminogen activator, migration, and invasion,” Brain Tumor Pathology, vol. 22, no. 2, pp. 79–87, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Shan, C. Schaaf, A. Schmidt et al., “Curcumin suppresses HIF1A synthesis and VEGFA release in pituitary adenomas,” Journal of Endocrinology, vol. 214, no. 3, pp. 389–398, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Zanotto-Filho, E. Braganhol, M. I. Edelweiss et al., “The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma,” The Journal of Nutritional Biochemistry, vol. 23, no. 6, pp. 591–601, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. C. Ramachandran, S. M. Nair, E. Escalon, and S. J. Melnick, “Potentiation of etoposide and temozolomide cytotoxicity by curcumin and turmeric force™ in brain tumor cell lines,” Journal of Complementary and Integrative Medicine, vol. 9, no. 1, article 20, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. M. M. Hossain, N. L. Banik, and S. K. Ray, “Synergistic anti-cancer mechanisms of curcumin and paclitaxel for growth inhibition of human brain tumor stem cells and LN18 and U138MG cells,” Neurochemistry International, vol. 61, no. 7, pp. 1102–1113, 2012. View at Publisher · View at Google Scholar · View at Scopus
  60. S. Shukla, H. Zaher, A. Hartz, B. Bauer, J. A. Ware, and S. V. Ambudkar, “Curcumin inhibits the activity of ABCG2/BCRP1, a multidrug resistance-linked ABC drug transporter in mice,” Pharmaceutical Research, vol. 26, no. 2, pp. 480–487, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. I. Zhang, Y. Cui, A. Amiri, Y. Ding, R. E. Campbell, and D. Maysinger, “Pharmacological inhibition of lipid droplet formation enhances the effectiveness of curcumin in glioblastoma,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 100, pp. 66–76, 2016. View at Publisher · View at Google Scholar · View at Scopus
  62. P. M. Luthra, R. Kumar, and A. Prakash, “Demethoxycurcumin induces Bcl-2 mediated G2/M arrest and apoptosis in human glioma U87 cells,” Biochemical and Biophysical Research Communications, vol. 384, no. 4, pp. 420–425, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. T.-Y. Huang, C.-W. Hsu, W.-C. Chang, M.-Y. Wang, J.-F. Wu, and Y.-C. Hsu, “Demethoxycurcumin retards cell growth and induces apoptosis in human brain malignant glioma GBM 8401 cells,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 396573, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  64. C. A. Campos, J. B. Gianino, B. J. Bailey et al., “Design, synthesis, and evaluation of curcumin-derived arylheptanoids for glioblastoma and neuroblastoma cytotoxicity,” Bioorganic and Medicinal Chemistry Letters, vol. 23, no. 24, pp. 6874–6878, 2013. View at Publisher · View at Google Scholar · View at Scopus
  65. Y.-M. Tsai, C.-F. Chien, L.-C. Lin, and T.-H. Tsai, “Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration,” International Journal of Pharmaceutics, vol. 416, no. 1, pp. 331–338, 2011. View at Publisher · View at Google Scholar · View at Scopus
  66. B. S. Patil, G. K. Jayaprakasha, K. N. Chidambara Murthy, and A. Vikram, “Bioactive compounds: historical perspectives, opportunities, and challenges,” Journal of Agricultural and Food Chemistry, vol. 57, no. 18, pp. 8142–8160, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. C. D. Lao, M. T. Ruffin, D. Normolle et al., “Dose escalation of a curcuminoid formulation,” BMC Complementary and Alternative Medicine, vol. 6, no. 1, article 10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. A.-L. Chen, C.-H. Hsu, J.-K. Lin et al., “Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions,” Anticancer Research, vol. 21, no. 4, pp. 2895–2900, 2001. View at Google Scholar · View at Scopus
  69. G. Shoba, D. Joy, T. Joseph, M. Majeed, R. Rajendran, and P. S. S. R. Srinivas, “Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers,” Planta Medica, vol. 64, no. 4, pp. 353–356, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. C. K. Atal, R. K. Dubey, and J. Singh, “Biochemical basis of enhanced drug bioavailability by piperine: evidence that piperine is a potent inhibitor of drug metabolism,” Journal of Pharmacology and Experimental Therapeutics, vol. 232, no. 1, pp. 258–262, 1985. View at Google Scholar · View at Scopus
  71. C. K. Atal, U. Zutshi, and P. G. Rao, “Scientific evidence on the role of Ayurvedic herbals on bioavailability of drugs,” Journal of Ethnopharmacology, vol. 4, no. 2, pp. 229–232, 1981. View at Publisher · View at Google Scholar · View at Scopus
  72. P. Anand, A. B. Kunnumakkara, R. A. Newman, and B. B. Aggarwal, “Bioavailability of curcumin: problems and promises,” Molecular Pharmaceutics, vol. 4, no. 6, pp. 807–818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. R. S. Mulik, J. Mönkkönen, R. O. Juvonen, K. R. Mahadik, and A. R. Paradkar, “ApoE3 mediated polymeric nanoparticles containing curcumin: apoptosis induced in vitro anticancer activity against neuroblastoma cells,” International Journal of Pharmaceutics, vol. 437, no. 1-2, pp. 29–41, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Chen, L. Pan, M. Jiang, D. Li, and L. Jin, “Nanostructured lipid carriers enhance the bioavailability and brain cancer inhibitory efficacy of curcumin both in vitro and in vivo,” Drug Delivery, vol. 23, no. 4, pp. 1383–1392, 2016. View at Publisher · View at Google Scholar
  75. M. T. Mirgani, B. Isacchi, M. Sadeghizadeh et al., “Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells,” International Journal of Nanomedicine, vol. 9, no. 1, pp. 403–417, 2014. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Babaei, M. Sadeghizadeh, Z. M. Hassan, M. A. H. Feizi, F. Najafi, and S. M. Hashemi, “Dendrosomal curcumin significantly suppresses cancer cell proliferation in vitro and in vivo,” International Immunopharmacology, vol. 12, no. 1, pp. 226–234, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. V. Erfani-Moghadam, A. Nomani, M. Zamani, Y. Yazdani, F. Najafi, and M. Sadeghizadeh, “A novel diblock copolymer of (monomethoxy poly [ethylene glycol]-oleate) with a small hydrophobic fraction to make stable micelles/polymersomes for curcumin delivery to cancer cells,” International Journal of Nanomedicine, vol. 9, no. 1, pp. 5541–5554, 2014. View at Publisher · View at Google Scholar · View at Scopus
  78. X. Zhuang, X. Xiang, W. Grizzle et al., “Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain,” Molecular Therapy, vol. 19, no. 10, pp. 1769–1779, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. R. G. Madane and H. S. Mahajan, “Curcumin-loaded nanostructured lipid carriers (NLCs) for nasal administration: design, characterization, and in vivo study,” Drug Delivery, vol. 23, no. 4, pp. 1326–1334, 2016. View at Publisher · View at Google Scholar
  80. B. Farhangi, A. M. Alizadeh, H. Khodayari et al., “Protective effects of dendrosomal curcumin on an animal metastatic breast tumor,” European Journal of Pharmacology, vol. 758, pp. 188–196, 2015. View at Publisher · View at Google Scholar · View at Scopus
  81. Z.-J. Sun, B. Sun, R.-B. Tao, X. Xie, X.-L. Lu, and D.-L. Dong, “A poly(glycerol-sebacate-curcumin) polymer with potential use for brain gliomas,” Journal of Biomedical Materials Research Part A, vol. 101, no. 1, pp. 253–260, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. G. Guo, S. Fu, L. Zhou et al., “Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells,” Nanoscale, vol. 3, no. 9, pp. 3825–3832, 2011. View at Publisher · View at Google Scholar
  83. R. C. Gupta, S. S. Bansal, F. Aqil et al., “Controlled-release systemic delivery—a new concept in cancer chemoprevention,” Carcinogenesis, vol. 33, no. 8, pp. 1608–1615, 2012. View at Publisher · View at Google Scholar · View at Scopus
  84. K. Shahani, S. K. Swaminathan, D. Freeman, A. Blum, L. Ma, and J. Panyam, “Injectable sustained release microparticles of curcumin: a new concept for cancer chemoprevention,” Cancer Research, vol. 70, no. 11, pp. 4443–4452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. S. Bisht, M. Mizuma, G. Feldmann et al., “Systemic administration of polymeric nanoparticle-encapsulated curcumin (NanoCurc) blocks tumor growth and metastases in preclinical models of pancreatic cancer,” Molecular Cancer Therapeutics, vol. 9, no. 8, pp. 2255–2264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. K. J. Lim, S. Bisht, E. E. Bar, A. Maitra, and C. G. Eberhart, “A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors,” Cancer Biology & Therapy, vol. 11, no. 5, pp. 464–473, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. F. Dilnawaz and S. K. Sahoo, “Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 85, no. 3, pp. 452–462, 2013. View at Publisher · View at Google Scholar · View at Scopus
  88. J.-H. Fang, Y.-H. Lai, T.-L. Chiu, Y.-Y. Chen, S.-H. Hu, and S.-Y. Chen, “Magnetic core–shell nanocapsules with dual-targeting capabilities and co-delivery of multiple drugs to treat brain gliomas,” Advanced Healthcare Materials, vol. 3, no. 8, pp. 1250–1260, 2014. View at Publisher · View at Google Scholar · View at Scopus
  89. P. Langone, P. R. Debata, S. Dolai et al., “Coupling to a cancer cell-specific antibody potentiates tumoricidal properties of curcumin,” International Journal of Cancer, vol. 131, no. 4, pp. E569–E578, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. E.-M. Strasser, B. Wessner, N. Manhart, and E. Roth, “The relationship between the anti-inflammatory effects of curcumin and cellular glutathione content in myelomonocytic cells,” Biochemical Pharmacology, vol. 70, no. 4, pp. 552–559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Yoshino, M. Haneda, M. Naruse et al., “Prooxidant activity of curcumin: copper-dependent formation of 8-hydroxy-2′-deoxyguanosine in DNA and induction of apoptotic cell death,” Toxicology in Vitro, vol. 18, no. 6, pp. 783–789, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Sakano and S. Kawanishi, “Metal-mediated DNA damage induced by curcumin in the presence of human cytochrome P450 isozymes,” Archives of Biochemistry and Biophysics, vol. 405, no. 2, pp. 223–230, 2002. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Nair, S. Strand, N. Frank et al., “Apoptosis and age-dependant induction of nuclear and mitochondrial etheno-DNA adducts in Long-Evans Cinnamon (LEC) rats: enhanced DNA damage by dietary curcumin upon copper accumulation,” Carcinogenesis, vol. 26, no. 7, pp. 1307–1315, 2005. View at Publisher · View at Google Scholar · View at Scopus
  94. N. Frank, J. Knauft, F. Amelung, J. Nair, H. Wesch, and H. Bartsch, “No prevention of liver and kidney tumors in Long-Evans Cinnamon rats by dietary curcumin, but inhibition at other sites and of metastases,” Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol. 523-524, pp. 127–135, 2003. View at Publisher · View at Google Scholar · View at Scopus
  95. P. J. Moos, K. Edes, J. E. Mullally, and F. A. Fitzpatrick, “Curcumin impairs tumor suppressor p53 function in colon cancer cells,” Carcinogenesis, vol. 25, no. 9, pp. 1611–1617, 2004. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Somasundaram, N. A. Edmund, D. T. Moore, G. W. Small, Y. Y. Shi, and R. Z. Orlowski, “Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer,” Cancer Research, vol. 62, no. 13, pp. 3868–3875, 2002. View at Google Scholar · View at Scopus
  97. D. Fong, A. Yeh, R. Naftalovich, T. H. Choi, and M. M. Chan, “Curcumin inhibits the side population (SP) phenotype of the rat C6 glioma cell line: towards targeting of cancer stem cells with phytochemicals,” Cancer Letters, vol. 293, no. 1, pp. 65–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. R. Galli, E. Binda, U. Orfanelli et al., “Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma,” Cancer Research, vol. 64, no. 19, pp. 7011–7021, 2004. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Zhang, T. Song, L. Yang et al., “Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients,” Journal of Experimental & Clinical Cancer Research, vol. 27, no. 1, article 85, 1 pages, 2008. View at Publisher · View at Google Scholar
  100. M. R. Gilbert, J. J. Dignam, T. S. Armstrong et al., “A randomized trial of bevacizumab for newly diagnosed glioblastoma,” The New England Journal of Medicine, vol. 370, no. 8, pp. 699–708, 2014. View at Publisher · View at Google Scholar · View at Scopus
  101. M. R. Gilbert, M. Wang, K. D. Aldape et al., “Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial,” Journal of Clinical Oncology, vol. 31, no. 32, pp. 4085–4091, 2013. View at Publisher · View at Google Scholar · View at Scopus
  102. O. L. Chinot, W. Wick, W. Mason et al., “Bevacizumab plus radiotherapy–temozolomide for newly diagnosed glioblastoma,” The New England Journal of Medicine, vol. 370, no. 8, pp. 709–722, 2014. View at Publisher · View at Google Scholar · View at Scopus
  103. M. Westphal, O. Heese, J. P. Steinbach et al., “A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma,” European Journal of Cancer, vol. 51, no. 4, pp. 522–532, 2015. View at Publisher · View at Google Scholar · View at Scopus
  104. R. Stupp, M. E. Hegi, T. Gorlia et al., “Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial,” The Lancet Oncology, vol. 15, no. 10, pp. 1100–1108, 2014. View at Publisher · View at Google Scholar · View at Scopus