Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 1320241, 14 pages
https://doi.org/10.1155/2017/1320241
Research Article

Oxidative Phosphorylation System in Gastric Carcinomas and Gastritis

1Laura-Bassi Centre of Expertise, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria
2Institute of Pathology, Paracelsus Medical University, 5020 Salzburg, Austria
3Division of Molecular Biology, Department of Microbiology, Paris-Lodron University, 5020 Salzburg, Austria
4Department of Medicine and Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine and Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37232, USA
5Department of Pediatrics, Paracelsus Medical University, 5020 Salzburg, Austria

Correspondence should be addressed to René G. Feichtinger; ta.klas@regnithcief.r

Received 31 January 2017; Revised 10 April 2017; Accepted 10 May 2017; Published 28 June 2017

Academic Editor: Maik Hüttemann

Copyright © 2017 René G. Feichtinger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. C. Chen, W. L. Fang, R. F. Wang et al., “Clinicopathological variation of Lauren classification in gastric cancer,” Pathology Oncology Research, vol. 22, no. 1, pp. 197–202, 2016. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Lauren, “The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification,” Acta Pathologica et Microbiologica Scandinavica, vol. 64, pp. 31–49, 1965. View at Google Scholar
  3. W. Polkowski, J. W. van Sandick, G. J. Offerhaus et al., “Prognostic value of Lauren classification and c-erbB-2 oncogene overexpression in adenocarcinoma of the esophagus and gastroesophageal junction,” Annals of Surgical Oncology, vol. 6, no. 3, pp. 290–297, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Berlth, E. Bollschweiler, U. Drebber, A. H. Hoelscher, and S. Moenig, “Pathohistological classification systems in gastric cancer: diagnostic relevance and prognostic value,” World Journal of Gastroenterology, vol. 20, no. 19, pp. 5679–5684, 2014. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Zheng, H. Takahashi, Y. Murai et al., “Pathobiological characteristics of intestinal and diffuse-type gastric carcinoma in Japan: an immunostaining study on the tissue microarray,” Journal of Clinical Pathology, vol. 60, no. 3, pp. 273–277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Correa and M. B. Piazuelo, “Helicobacter pylori infection and gastric adenocarcinoma,” US Gastroenterology & Hepatology Review, vol. 7, no. 1, pp. 59–64, 2011. View at Google Scholar
  7. R. G. Feichtinger, D. Neureiter, J. A. Mayr et al., “Loss of mitochondria in ganglioneuromas,” Frontiers in Bioscience (Elite Edition), vol. 3, pp. 179–186, 2011. View at Google Scholar
  8. R. G. Feichtinger, S. Weis, J. A. Mayr et al., “Alterations of oxidative phosphorylation complexes in astrocytomas,” Glia, vol. 62, no. 4, pp. 514–525, 2014. View at Publisher · View at Google Scholar · View at Scopus
  9. R. G. Feichtinger, S. Weis, J. A. Mayr et al., “Alterations of oxidative phosphorylation in meningiomas and peripheral nerve sheath tumors,” Neuro-Oncology, vol. 18, no. 2, pp. 184–194, 2016. View at Publisher · View at Google Scholar · View at Scopus
  10. R. G. Feichtinger, F. Zimmermann, J. A. Mayr et al., “Low aerobic mitochondrial energy metabolism in poorly- or undifferentiated neuroblastoma,” BMC Cancer, vol. 10, p. 149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Mayr, D. Meierhofer, F. Zimmermann et al., “Loss of complex I due to mitochondrial DNA mutations in renal oncocytoma,” Clinical Cancer Research, vol. 14, no. 8, pp. 2270–2275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. O. Warburg, “Über den Stoffwechsel der Carcinomzelle,” Die Naturwissenschaften, vol. 50, pp. 1131–1137, 1924. View at Google Scholar
  13. O. Warburg, “The Metabolism of Tumors,” R. R. Smith, Ed., pp. 129–169, Richard R. Smith Inc., New York, 1931. View at Google Scholar
  14. D. Astuti, F. Latif, A. Dallol et al., “Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma,” American Journal of Human Genetics, vol. 69, no. 1, pp. 49–54, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. D. E. Benn, M. S. Croxson, K. Tucker et al., “Novel succinate dehydrogenase subunit B (SDHB) mutations in familial phaeochromocytomas and paragangliomas, but an absence of somatic SDHB mutations in sporadic phaeochromocytomas,” Oncogene, vol. 22, no. 9, pp. 1358–1364, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Gasparre, A. M. Porcelli, E. Bonora et al., “Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 21, pp. 9001–9006, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. F. A. Zimmermann, J. A. Mayr, R. Feichtinger et al., “Respiratory chain complex I is a mitochondrial tumor suppressor of oncocytic tumors,” Frontiers in Bioscience, vol. 3, pp. 315–325, 2011. View at Google Scholar
  18. N. O. Bianchi, M. S. Bianchi, and S. M. Richard, “Mitochondrial genome instability in human cancers,” Mutation Research, vol. 488, no. 1, pp. 9–23, 2001. View at Google Scholar
  19. W. Habano, T. Sugai, S. I. Nakamura, N. Uesugi, T. Yoshida, and S. Sasou, “Microsatellite instability and mutation of mitochondrial and nuclear DNA in gastric carcinoma,” Gastroenterology, vol. 118, no. 5, pp. 835–841, 2000. View at Publisher · View at Google Scholar
  20. W. Y. Hung, C. W. Wu, P. H. Yin et al., “Somatic mutations in mitochondrial genome and their potential roles in the progression of human gastric cancer,” Biochimica et Biophysica Acta, vol. 1800, no. 3, pp. 264–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Kose, T. Hiyama, S. Tanaka, M. Yoshihara, W. Yasui, and K. Chayama, “Somatic mutations of mitochondrial DNA in digestive tract cancers,” Journal of Gastroenterology and Hepatology, vol. 20, no. 11, pp. 1679–1684, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. V. Máximo, P. Soares, R. Seruca, A. S. Rocha, P. Castro, and M. Sobrinho-Simões, “Microsatellite instability, mitochondrial DNA large deletions, and mitochondrial DNA mutations in gastric carcinoma,” Genes, Chromosomes & Cancer, vol. 32, no. 2, pp. 136–143, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. M. Alam, S. Lal, F. G. KE, and L. Zhang, “A holistic view of cancer bioenergetics: mitochondrial function and respiration play fundamental roles in the development and progression of diverse tumors,” Clinical and Translational Medicine, vol. 5, no. 1, p. 3, 2016. View at Publisher · View at Google Scholar
  24. G. A. Brooks, “Mammalian fuel utilization during sustained exercise,” Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, vol. 120, no. 1, pp. 89–107, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. J. Chen, N. G. Mahieu, X. Huang et al., “Lactate metabolism is associated with mammalian mitochondria,” Nature Chemical Biology, vol. 12, no. 11, pp. 937–943, 2016. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Georgescu, R. J. Gooding, R. C. Doiron et al., “Molecular characterization of Gleason patterns 3 and 4 prostate cancer using reverse Warburg effect-associated genes,” Cancer & Metabolism, vol. 4, p. 8, 2016. View at Publisher · View at Google Scholar
  27. S. Pavlides, D. Whitaker-Menezes, R. Castello-Cros et al., “The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma,” Cell Cycle, vol. 8, no. 23, pp. 3984–4001, 2009. View at Publisher · View at Google Scholar
  28. K. R. Jones, J. M. Whitmire, and D. S. Merrell, “A tale of two toxins: Helicobacter pylori CagA and VacA modulate host pathways that impact disease,” Frontiers in Microbiology, vol. 1, p. 115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. T. L. Cover and S. R. Blanke, “Helicobacter pylori VacA, a paradigm for toxin multifunctionality,” Nature Reviews. Microbiology, vol. 3, no. 4, pp. 320–332, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. J. H. Foo, J. G. Culvenor, R. L. Ferrero, T. Kwok, T. Lithgow, and K. Gabriel, “Both the p33 and p55 subunits of the Helicobacter pylori VacA toxin are targeted to mammalian mitochondria,” Journal of Molecular Biology, vol. 401, no. 5, pp. 792–798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Galmiche and J. Rassow, “Targeting of Helicobacter pylori VacA to mitochondria,” Gut Microbes, vol. 1, no. 6, pp. 392–395, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. P. Jain, Z. Q. Luo, and S. R. Blanke, “Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 38, pp. 16032–16037, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. L. Palframan, T. Kwok, and K. Gabriel, “Vacuolating cytotoxin A (VacA), a key toxin for Helicobacter pylori pathogenesis,” Frontiers in Cellular and Infection Microbiology, vol. 2, p. 92, 2012. View at Publisher · View at Google Scholar
  34. X. W. Huang, R. H. Luo, Q. Zhao et al., “Helicobacter pylori induces mitochondrial DNA mutation and reactive oxygen species level in AGS cells,” International Journal of Medical Sciences, vol. 8, no. 1, pp. 56–67, 2011. View at Publisher · View at Google Scholar
  35. A. M. Machado, C. Figueiredo, E. Touati et al., “Helicobacter pylori infection induces genetic instability of nuclear and mitochondrial DNA in gastric cells,” Clinical Cancer Research, vol. 15, no. 9, pp. 2995–3002, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. A. M. Machado, C. Desler, S. Bøggild et al., “Helicobacter pylori infection affects mitochondrial function and DNA repair, thus, mediating genetic instability in gastric cells,” Mechanisms of Ageing and Development, vol. 134, no. 10, pp. 460–466, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. L. K. Greenfield and N. L. Jones, “Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis,” Trends in Microbiology, vol. 21, no. 11, pp. 602–612, 2013. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Karita, S. Teramukai, S. Matsumoto, and H. Shibuta, “Intracellular VacA is a valuable marker to predict whether Helicobacter pylori induces progressive atrophic gastritis that is associated with the development of gastric cancer,” Digestive Diseases and Sciences, vol. 50, no. 1, pp. 56–64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. T. L. Cover and M. J. Blaser, “Purification and characterization of the vacuolating toxin from Helicobacter pylori,” The Journal of Biological Chemistry, vol. 267, no. 15, pp. 10570–10575, 1992. View at Google Scholar
  40. F. A. Zimmermann, J. A. Mayr, D. Neureiter et al., “Lack of complex I is associated with oncocytic thyroid tumours,” British Journal of Cancer, vol. 100, no. 9, pp. 1434–1437, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. S. Reuter, J. O. Sass, T. Leis et al., “HIBCH deficiency in a patient with phenotypic characteristics of mitochondrial disorders,” American Journal of Medical Genetics. Part a, vol. 164A, no. 12, pp. 3162–3169, 2014. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Koch, P. Freisinger, R. G. Feichtinger et al., “Mutations in TTC19: expanding the molecular, clinical and biochemical phenotype,” Orphanet Journal of Rare Diseases, vol. 10, p. 40, 2015. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Acham-Roschitz, B. Plecko, F. Lindbichler et al., “A novel mutation of the RRM2B gene in an infant with early fatal encephalomyopathy, central hypomyelination, and tubulopathy,” Molecular Genetics and Metabolism, vol. 98, no. 3, pp. 300–304, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. B. J. Dicken, D. L. Bigam, C. Cass, J. R. Mackey, A. A. Joy, and S. M. Hamilton, “Gastric adenocarcinoma: review and considerations for future directions,” Annals of Surgery, vol. 241, no. 1, pp. 27–39, 2005. View at Google Scholar
  45. R. M. Peek Jr. and M. J. Blaser, “Helicobacter pylori and gastrointestinal tract adenocarcinomas,” Nature Reviews. Cancer, vol. 2, no. 1, pp. 28–37, 2002. View at Publisher · View at Google Scholar
  46. O. Rotimi, A. Cairns, S. Gray, P. Moayyedi, and M. F. Dixon, “Histological identification of Helicobacter pylori: comparison of staining methods,” Journal of Clinical Pathology, vol. 53, no. 10, pp. 756–759, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. V. Necchi, M. E. Candusso, F. Tava et al., “Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori,” Gastroenterology, vol. 132, no. 3, pp. 1009–1023, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. M. R. Amieva, N. R. Salama, L. S. Tompkins, and S. Falkow, “Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells,” Cellular Microbiology, vol. 4, no. 10, pp. 677–690, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. A. Dubois and T. Boren, “Helicobacter pylori is invasive and it may be a facultative intracellular organism,” Cellular Microbiology, vol. 9, no. 5, pp. 1108–1116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Chen, D. Yang, X. Li et al., “Mutational landscape of gastric adenocarcinoma in Chinese: implications for prognosis and therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 4, pp. 1107–1112, 2015. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Guo, A. Huang, C. Hu et al., “Complex clonal mosaicism within microdissected intestinal metaplastic glands without concurrent gastric cancer,” Journal of Medical Genetics, vol. 53, no. 9, pp. 643–646, 2016. View at Publisher · View at Google Scholar
  52. D. Feng, A. Witkowski, and S. Smith, “Down-regulation of mitochondrial acyl carrier protein in mammalian cells compromises protein lipoylation and respiratory complex I and results in cell death,” The Journal of Biological Chemistry, vol. 284, no. 17, pp. 11436–11445, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Martinvalet, D. M. Dykxhoorn, R. Ferrini, and J. Lieberman, “Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death,” Cell, vol. 133, no. 4, pp. 681–692, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. J. E. Ricci, C. Muñoz-Pinedo, P. Fitzgerald et al., “Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain,” Cell, vol. 117, no. 6, pp. 773–786, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. M. V. Yusenko, T. Ruppert, and G. Kovacs, “Analysis of differentially expressed mitochondrial proteins in chromophobe renal cell carcinomas and renal oncocytomas by 2-D gel electrophoresis,” International Journal of Biological Sciences, vol. 6, no. 3, pp. 213–224, 2010. View at Google Scholar
  56. M. Alcazar-Fabra, P. Navas, and G. Brea-Calvo, “Coenzyme Q biosynthesis and its role in the respiratory chain structure,” Biochimica et Biophysica Acta, vol. 1857, no. 8, pp. 1073–1078, 2016. View at Publisher · View at Google Scholar · View at Scopus
  57. T. K. Er, C. C. Chen, Y. Y. Liu et al., “Computational analysis of a novel mutation in ETFDH gene highlights its long-range effects on the FAD-binding motif,” BMC Structural Biology, vol. 11, p. 43, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J. L. Johnson, K. E. Coyne, R. M. Garrett et al., “Isolated sulfite oxidase deficiency: identification of 12 novel SUOX mutations in 10 patients,” Human Mutation, vol. 20, no. 1, p. 74, 2002. View at Publisher · View at Google Scholar
  59. E. Lagoutte, S. Mimoun, M. Andriamihaja, C. Chaumontet, F. Blachier, and F. Bouillaud, “Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes,” Biochimica et Biophysica Acta, vol. 1797, no. 8, pp. 1500–1511, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Palorini, T. Simonetto, C. Cirulli, and F. Chiaradonna, “Mitochondrial complex I inhibitors and forced oxidative phosphorylation synergize in inducing cancer cell death,” International Journal of Cell Biology, vol. 2013, Article ID 243876, 14 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. F. Wang, P. Xia, F. Wu et al., “Helicobacter pylori VacA disrupts apical membrane-cytoskeletal interactions in gastric parietal cells,” The Journal of Biological Chemistry, vol. 283, no. 39, pp. 26714–26725, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. M. S. Kim, N. Kim, S. E. Kim et al., “Long-term follow up Helicobacter pylori reinfection rate after second-line treatment: bismuth-containing quadruple therapy versus moxifloxacin-based triple therapy,” BMC Gastroenterology, vol. 13, p. 138, 2013. View at Publisher · View at Google Scholar · View at Scopus
  63. P. P. Tagkalidis, S. G. Royce, F. A. Macrae, and P. S. Bhathal, “Selective colonization by Helicobacter pylori of the deep gastric glands and intracellular canaliculi of parietal cells in the setting of chronic proton pump inhibitor use,” European Journal of Gastroenterology & Hepatology, vol. 14, no. 4, pp. 453–456, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. J. P. Gisbert, M. Luna, B. Gómez et al., “Recurrence of Helicobacter pylori infection after several eradication therapies: long-term follow-up of 1000 patients,” Alimentary Pharmacology & Therapeutics, vol. 23, no. 6, pp. 713–719, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Khulusi, M. A. Mendall, P. Patel, J. Levy, S. Badve, and T. C. Northfield, “Helicobacter pylori infection density and gastric inflammation in duodenal ulcer and non-ulcer subjects,” Gut, vol. 37, no. 3, pp. 319–324, 1995. View at Publisher · View at Google Scholar
  66. K. T. Wilson, K. S. Ramanujam, H. L. Mobley, R. F. Musselman, S. P. James, and S. J. Meltzer, “Helicobacter pylori stimulates inducible nitric oxide synthase expression and activity in a murine macrophage cell line,” Gastroenterology, vol. 111, no. 6, pp. 1524–1533, 1996. View at Publisher · View at Google Scholar
  67. F. I. Bussiere, R. Chaturvedi, M. Asim et al., “Low multiplicity of infection of Helicobacter pylori suppresses apoptosis of B lymphocytes,” Cancer Research, vol. 66, no. 13, pp. 6834–6842, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. T. Hiyama, S. Tanaka, H. Shima et al., “Somatic mutation of mitochondrial DNA in Helicobacter pylori-associated chronic gastritis in patients with and without gastric cancer,” International Journal of Molecular Medicine, vol. 12, no. 2, pp. 169–174, 2003. View at Google Scholar
  69. W. J. Im, M. G. Kim, T. K. Ha, and S. J. Kwon, “Tumor size as a prognostic factor in gastric cancer patient,” Journal of Gastric Cancer, vol. 12, no. 3, pp. 164–172, 2012. View at Publisher · View at Google Scholar · View at Scopus
  70. H. M. Wang, C. M. Huang, C. H. Zheng et al., “Tumor size as a prognostic factor in patients with advanced gastric cancer in the lower third of the stomach,” World Journal of Gastroenterology, vol. 18, no. 38, pp. 5470–5475, 2012. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Pinto-De-Sousa, L. David, M. Seixas, and A. Pimenta, “Clinicopathologic profiles and prognosis of gastric carcinomas from the cardia, fundus/body and antrum,” Digestive Surgery, vol. 18, no. 2, pp. 102–110, 2001. View at Publisher · View at Google Scholar