Table of Contents Author Guidelines Submit a Manuscript
Oxidative Medicine and Cellular Longevity
Volume 2017, Article ID 1675230, 11 pages
https://doi.org/10.1155/2017/1675230
Review Article

Protective Mechanisms of the Mitochondrial-Derived Peptide Humanin in Oxidative and Endoplasmic Reticulum Stress in RPE Cells

1Department of Pathology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
2Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, CA, USA
3Department Ophthalmology, USC Roski Eye Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA

Correspondence should be addressed to Ram Kannan; gro.ynehod@nannakr

Received 13 March 2017; Revised 13 June 2017; Accepted 28 June 2017; Published 26 July 2017

Academic Editor: Luciano Saso

Copyright © 2017 Leonid Minasyan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Ambati and B. J. Fowler, “Mechanisms of age-related macular degeneration,” Neuron, vol. 75, no. 1, pp. 26–39, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. K. L. Pennington and M. M. DeAngelis, “Epidemiology of age-related macular degeneration (AMD): associations with cardiovascular disease phenotypes and lipid factors,” Eye and Vision, vol. 3, no. 1, p. 34, 2016. View at Publisher · View at Google Scholar
  3. R. E. Hogg and U. Chakravarthy, “Visual function and dysfunction in early and late age-related maculopathy,” Progress in Retinal and Eye Research, vol. 25, no. 3, pp. 249–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Z. Nowak, “Age-related macular degeneration (AMD): pathogenesis and therapy,” Pharmacological Reports, vol. 58, no. 3, pp. 353–363, 2006. View at Google Scholar
  5. P. T. V. M. D. Jong, “Age-related macular degeneration,” New England Journal of Medicine, vol. 355, no. 14, pp. 1474–1485, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. R. A. Armstrong and M. Mousavi, “Overview of risk factors for age-related macular degeneration (AMD),” Journal of Stem Cells, vol. 10, no. 3, p. 171, 2015. View at Google Scholar
  7. L. G. Fritsche, W. Igl, J. N. Bailey et al., “A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants,” Nature Genetics, vol. 48, no. 2, pp. 134–143, 2016. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Strauss, “The retinal pigment epithelium in visual function,” Physiological Reviews, vol. 85, no. 3, pp. 845–881, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. S. He, J. Yaung, Y. H. Kim, E. Barron, S. J. Ryan, and D. R. Hinton, “Endoplasmic reticulum stress induced by oxidative stress in retinal pigment epithelial cells,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 246, no. 5, pp. 677–683, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Dou, R. Kannan, and D. R. Hinton, “Endoplasmic reticulum response to oxidative stress in RPE,” in Studies on Retinal and Choroidal Disorders, pp. 241–258, Humana Press, 2012. View at Google Scholar
  11. D. Matsunaga, P. G. Sreekumar, K. Ishikawa et al., “Humanin protects RPE cells from endoplasmic reticulum stress-induced apoptosis by upregulation of mitochondrial glutathione,” PLoS One, vol. 11, no. 10, article e0165150, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. S. G. Jarrett and M. E. Boulton, “Consequences of oxidative stress in age-related macular degeneration,” Molecular Aspects of Medicine, vol. 33, no. 4, pp. 399–417, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. P. G. Sreekumar, D. R. Hinton, and R. Kannan, “Endoplasmic reticulum-mitochondrial crosstalk: a novel role for the mitochondrial peptide humanin,” Neural Regeneration Research, vol. 12, no. 1, pp. 35–38, 2017. View at Publisher · View at Google Scholar
  14. S. G. Jarrett, H. Lin, B. F. Godley, and M. E. Boulton, “Mitochondrial DNA damage and its potential role in retinal degeneration,” Progress in Retinal and Eye Research, vol. 27, no. 6, pp. 596–607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Terluk, R. J. Kapphahn, L. M. Soukup et al., “Investigating mitochondria as a target for treating age-related macular degeneration,” Journal of Neuroscience, vol. 35, no. 18, pp. 7304–7311, 2015. View at Publisher · View at Google Scholar · View at Scopus
  16. L. J. Cobb, C. Lee, J. Xiao et al., “Naturally occurring mitochondrial-derived peptides are age-dependent regulators of apoptosis, insulin sensitivity, and inflammatory markers,” Aging (Albany NY), vol. 8, no. 4, p. 796, 2016. View at Publisher · View at Google Scholar
  17. P. F. Chinnery and E. A. Schon, “Mitochondria,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 74, no. 9, pp. 1188–1199, 2003. View at Google Scholar
  18. T. R. Mercer, S. Neph, M. E. Dinger et al., “The human mitochondrial transcriptome,” Cell, vol. 146, no. 4, pp. 645–658, 2011. View at Google Scholar
  19. J. W. Taanman, “The mitochondrial genome: structure, transcription, translation and replication,” Biochimica et Biophysica Acta (BBA)-Bioenergetics, vol. 1410, no. 2, pp. 103–123, 1999. View at Google Scholar
  20. P. Smits, J. Smeitink, and L. van den Heuvel, “Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies,” Journal of Biomedicine & Biotechnology, vol. 2010, Article ID 737385, 24 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” The International Journal of Biochemistry & Cell Biology, vol. 39, no. 1, pp. 44–84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Nunnari and A. Suomalainen, “Mitochondria: in sickness and in health,” Cell, vol. 148, no. 6, pp. 1145–1159, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. S. J. Andrews and J. A. Rothnagel, “Emerging evidence for functional peptides encoded by short open reading frames,” Nature Reviews Genetics, vol. 15, no. 3, pp. 193–204, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Saghatelian and J. P. Couso, “Discovery and characterization of smORF-encoded bioactive polypeptides,” Nature Chemical Biology, vol. 11, no. 12, pp. 909–916, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Hashimoto, T. Niikura, H. Tajima et al., “A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Aβ,” Proceedings of the National Academy of Sciences, vol. 98, no. 11, pp. 6336–6341, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Ikonen, B. Liu, Y. Hashimoto et al., “Interaction between the Alzheimer’s survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis,” Proceedings of the National Academy of Sciences, vol. 100, no. 22, pp. 13042–13047, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Guo, D. Zhai, E. Cabezas et al., “Humanin peptide suppresses apoptosis by interfering with Bax activation,” Nature, vol. 423, no. 6938, pp. 456–461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Lee, J. Zeng, B. G. Drew et al., “The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance,” Cell Metabolism, vol. 21, no. 3, pp. 443–454, 2015. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Yamagishi, Y. Hashimoto, T. Niikura, and I. Nishimoto, “Identification of essential amino acids in Humanin, a neuroprotective factor against Alzheimer’s disease-relevant insults,” Peptides, vol. 24, no. 4, pp. 585–595, 2003. View at Google Scholar
  30. K. Yen, C. Lee, H. Mehta, and P. Cohen, “The emerging role of the mitochondrial-derived peptide humanin in stress resistance,” Journal of Molecular Endocrinology, vol. 50, no. 1, pp. R11–R19, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Lee, K. Yen, and P. Cohen, “Humanin: a harbinger of mitochondrial-derived peptides?” Trends in Endocrinology & Metabolism, vol. 24, no. 5, pp. 222–228, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Bodzioch, K. Lapicka-Bodzioch, B. Zapala, W. Kamysz, B. Krec-Wilk, and A. Dembinska-Kiec, “Evidence for potential functionality of nuclearly-encoded humanin isoforms,” Genomics, vol. 94, pp. 247–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Hashimoto, T. Niikura, Y. Ito et al., “Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer’s disease-relevant insults,” Journal of Neuroscience, vol. 21, no. 23, pp. 9235–9245, 2001. View at Google Scholar
  34. V. Maximov, A. Martynenko, G. Hunsmann, and V. Tarantul, “Mitochondrial 16S rRNA gene encodes a functional peptide, a potential drug for Alzheimer’s disease and target for cancer therapy,” Medical Hypotheses, vol. 59, no. 6, pp. 670–673, 2002. View at Google Scholar
  35. D. Zhai, F. Luciano, X. Zhu, B. Guo, A. C. Satterthwait, and J. C. Reed, “Humanin binds and nullifies Bid activity by blocking its activation of Bax and Bak,” Journal of Biological Chemistry, vol. 280, no. 16, pp. 15815–15824, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Luciano, D. Zhai, X. Zhu et al., “Cytoprotective peptide humanin binds and inhibits proapoptotic Bcl-2/Bax family protein BimEL,” Journal of Biological Chemistry, vol. 280, no. 16, pp. 15825–15835, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. J. Xiao, S. J. Kim, P. Cohen, and K. Yen, “Humanin: functional interfaces with IGF-I,” Growth Hormone & IGF Research, vol. 29, pp. 21–27, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Holzenberger, J. Dupont, B. Ducos et al., “IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice,” Nature, vol. 421, no. 6919, pp. 182–187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. R. H. Muzumdar, D. M. Huffman, G. Atzmon et al., “Humanin: a novel central regulator of peripheral insulin action,” PloS One, vol. 4, no. 7, article e6334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. P. T. Hoang, P. Park, L. J. Cobb et al., “The neurosurvival factor humanin inhibits β-cell apoptosis via signal transducer and activator of transcription 3 activation and delays and ameliorates diabetes in nonobese diabetic mice,” Metabolism, vol. 59, no. 3, pp. 343–349, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Kariya, M. Hirano, Y. Furiya, K. Sugie, and S. Ueno, “Humanin detected in skeletal muscles of MELAS patients: a possible new therapeutic agent,” Acta Neuropathologica, vol. 109, no. 4, pp. 367–372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Niikura, E. Sidahmed, C. Hirata-Fukae, P. S. Aisen, and Y. Matsuoka, “A humanin derivative reduces amyloid beta accumulation and ameliorates memory deficit in triple transgenic mice,” PLoS One, vol. 6, no. 1, article e16259, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. K. Oh, A. R. Bachar, D. G. Zacharias et al., “Humanin preserves endothelial function and prevents atherosclerotic plaque progression in hypercholesterolemic ApoE deficient mice,” Atherosclerosis, vol. 219, no. 1, pp. 65–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Men, X. Zhang, Y. Yang, and D. Gao, “An AD-related neuroprotector rescues transformed rat retinal ganglion cells from CoCl2-induced apoptosis,” Journal of Molecular Neuroscience, vol. 47, no. 1, pp. 144–149, 2012. View at Google Scholar
  45. S. Kariya, N. Takahashi, N. Ooba, M. Kawahara, H. Nakayama, and S. Ueno, “Humanin inhibits cell death of serum-deprived PC12h cells,” Neuroreport, vol. 13, no. 6, pp. 903–907, 2002. View at Google Scholar
  46. X. Xu, C. C. Chua, J. Gao, R. C. Hamdy, and B. H. L. Chua, “Humanin is a novel neuroprotective agent against stroke,” Stroke, vol. 37, no. 10, pp. 2613–2619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. P. G. Sreekumar, K. Ishikawa, C. Spee et al., “The mitochondrial-derived peptide humanin protects RPE cells from oxidative stress, senescence, and mitochondrial dysfunction,” Investigative Ophthalmology & Visual Science, 2016, vol. 57, no. 3, pp. 1238–1253, 2016. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Sonoda, C. Spee, E. Barron, S. J. Ryan, R. Kannan, and D. R. Hinton, “A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells,” Nature Protocols, vol. 4, no. 5, pp. 662–673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Hashimoto, M. Kurita, S. Aiso, I. Nishimoto, and M. Matsuoka, “Humanin inhibits neuronal cell death by interacting with a cytokine receptor complex or complexes involving CNTF receptor alpha/WSX-1/gp130,” Molecular Biology of the Cell, vol. 20, no. 12, pp. 2864–2873, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Hashimoto, M. Kurita, and M. Matsuoka, “Identification of soluble WSX-1 not as a dominant-negative but as an alternative functional subunit of a receptor for an anti-Alzheimer’s disease rescue factor humanin,” Biochemical & Biophysical Research Communications, vol. 389, no. 1, pp. 95–99, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Chiba, M. Yamada, Y. Hashimoto et al., “Development of a femtomolar-acting humanin derivative named colivelin by attaching activity-dependent neurotrophic factor to its N terminus: characterization of colivelin-mediated neuroprotection against Alzheimer’s disease-relevant insults in vitro and in vivo,” The Journal of Neuroscience, vol. 25, no. 44, pp. 10252–10261, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Hashimoto, H. Suzuki, S. Aiso, T. Niikura, I. Nishimoto, and M. Matsuoka, “Involvement of tyrosine kinases and STAT3 in Humanin-mediated neuroprotection,” Life Sciences, vol. 77, no. 24, pp. 3092–3104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. S. J. Kim, N. Guerrero, G. Wassef et al., “The mitochondrial-derived peptide humanin activates the ERK1/2, AKT, and STAT3 signaling pathways and has age-dependent signaling pathways and has age-dependent signaling differences in the hippocampus,” Oncotarget, vol. 7, no. 30, pp. 46899–46912, 2016. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Tajima, T. Niikura, Y. Hashimoto et al., “Evidence for in vivo production of humanin peptide, a neuroprotective factor against Alzheimer’s disease-related insults,” Neuroscience Letters, vol. 324, no. 3, pp. 227–231, 2003. View at Google Scholar
  55. R. H. Muzumdar, D. M. Huffman, J. W. Calvert et al., “Acute humanin therapy attenuates myocardial ischemia and reperfusion injury in mice,” Arteriosclerosis Thrombosis and Vascular Biology, vol. 30, no. 10, pp. 1940–1948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. T. Kin, K. Sugie, M. Hirano, Y. Goto, I. Nishino, and S. Ueno, “Humanin expression in skeletal muscles of patients with chronic progressive external ophthalmoplegia,” Journal of Human Genetics, vol. 51, no. 6, pp. 555–558, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Knapp, U. Czech, A. Polus, M. Chojnacka, A. Śliwa et al., “Humanin peptides regulate calcium flux in the mammalian neuronal, glial and endothelial cells under stress conditions,” Journal of Cell Science & Therapy, vol. 3, no. 4, p. 128, 2012. View at Publisher · View at Google Scholar
  58. S. Thummasorn, N. Apaijai, S. Kerdphoo, K. Shinlapawittayatorn, S. C. Chattipakorn, and N. Chattipakorn, “Humanin exerts cardioprotection against cardiac ischemia/reperfusion injury through attenuation of mitochondrial dysfunction,” Cardiovascular Therapeutics, vol. 34, no. 6, pp. 404–414, 2016. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. P. Chin, J. Keni, J. Wan et al., “Pharmacokinetics and tissue distribution of humanin and its analogues in male rodents,” Endocrinology, vol. 154, no. 10, pp. 3739–3744, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. R. J. Widmer, A. J. Flammer, J. Herrmann et al., “Circulating humanin levels are associated with preserved coronary endothelial function,” American Journal of Physiology-Heart and Circulatory Physiology, vol. 304, no. 3, pp. H393–H397, 2013. View at Publisher · View at Google Scholar
  61. Y. Lytvyn, J. Wan, V. Lai, P. Cohen, and D. Z. Cherney, “The effect of sex on humanin levels in healthy adults and patients with uncomplicated type 1 diabetes mellitus,” Canadian Journal of Physiology and Pharmacology, vol. 93, no. 4, pp. 239–243, 2015. View at Publisher · View at Google Scholar · View at Scopus
  62. H. Purnyn, “The mammalian retina: structure and blood supply,” Neurophysiology, vol. 45, no. 3, pp. 266–276, 2013. View at Google Scholar
  63. P. X. Shaw, T. Stiles, C. Douglas et al., “Oxidative stress, innate immunity, and age-related macular degeneration,” AIMS Molecular Science, vol. 3, no. 2, pp. 196–221, 2016. View at Publisher · View at Google Scholar
  64. W. Dröge, “Free radicals in the physiological control of cell function,” Physiological Reviews, vol. 82, no. 1, pp. 47–95, 2002. View at Publisher · View at Google Scholar
  65. A. Phaniendra, D. B. Jestadi, and L. Periyasamy, “Free radicals: properties, sources, targets, and their implication in various diseases,” Indian Journal of Clinical Biochemistry, vol. 30, no. 1, pp. 11–26, 2015. View at Publisher · View at Google Scholar · View at Scopus
  66. J. M. Burke, P. Kaczara, C. Skumatz, M. Zareba, M. W. Raciti, and T. Sarna, “Dynamic analyses reveal cytoprotection by RPE melanosomes against non-photic stress,” Molecular Vision, vol. 17, pp. 2864–2877, 2011. View at Google Scholar
  67. J. W. Crabb, M. Miyagi, X. Gu et al., “Drusen proteome analysis: an approach to the etiology of age-related macular degeneration,” Proceedings of the National Academy of Sciences, vol. 99, no. 23, pp. 14682–14687, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Ohno-Matsui, “Parallel findings in age-related macular degeneration and Alzheimer’s disease,” Progress in Retinal and Eye Research, vol. 30, no. 4, pp. 217–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Blasiak, S. Glowacki, A. Kauppinen, and K. Kaarniranta, “Mitochondrial and nuclear DNA damage and repair in age-related macular degeneration,” International Journal of Molecular Sciences, vol. 14, no. 2, pp. 2996–3010, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. J. Cai, K. C. Nelson, M. Wu, P. Sternberg Jr., and D. P. Jones, “Oxidative damage and protection of the RPE,” Progress in Retinal and Eye Research, vol. 19, no. 2, pp. 205–221, 2000. View at Google Scholar
  71. F. Q. Liang and B. F. Godley, “Oxidative stress-induced mitochondrial DNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and age-related macular degeneration,” Experimental Eye Research, vol. 76, no. 4, pp. 397–403, 2003. View at Google Scholar
  72. C. L. Nordgaard, P. P. Karunadharma, X. Feng, T. W. Olsen, and D. A. Ferrington, “Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration,” Investigative Ophthalmology & Visual Science, vol. 49, no. 7, pp. 2848–2455, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Kinnunen, G. Petrovski, M. C. Moe, A. Berta, and K. Kaarniranta, “Molecular mechanisms of retinal pigment epithelium damage and development of age-related macular degeneration,” Acta Ophthalmologica, vol. 90, no. 4, pp. 299–309, 2012. View at Publisher · View at Google Scholar · View at Scopus
  74. L. E. Klein, L. Cui, Z. Gong, K. Su, and R. Muzumdar, “A humanin analog decreases oxidative stress and preserves mitochondrial integrity in cardiac myoblasts,” Biochemical and Biophysical Research Communications, vol. 440, no. 2, pp. 197–203, 2013. View at Publisher · View at Google Scholar · View at Scopus
  75. R. M. Naylor, D. J. Baker, and J. M. van Deursen, “Senescent cells: a novel therapeutic target for aging and age-related diseases,” Clinical Pharmacology and Therapeutics, vol. 93, no. 1, pp. 105–116, 2013. View at Publisher · View at Google Scholar · View at Scopus
  76. M. R. Kozlowski, “RPE cell senescence: a key contributor to age-related macular degeneration,” Medical Hypotheses, vol. 78, no. 4, pp. 505–510, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. D. Ron and P. Walter, “Signal integration in the endoplasmic reticulum unfolded protein response,” Nature Reviews Molecular Cell Biology, vol. 8, no. 7, pp. 519–529, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. A. Görlach, P. Klappa, and T. Kietzmann, “The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control,” Antioxidants & Redox Signaling, vol. 8, no. 9-10, pp. 1391–1418, 2006. View at Publisher · View at Google Scholar · View at Scopus
  79. B. P. Tu, S. C. Ho-Schleyer, K. J. Travers, and J. S. Weissman, “Biochemical basis of oxidative protein folding in the endoplasmic reticulum,” Science, vol. 290, no. 5496, pp. 1571–1574, 2000. View at Google Scholar
  80. G. Jing, J. J. Wang, and S. X. Zhang, “ER stress and apoptosis: a new mechanism for retinal cell death,” Experimental Diabetes Research, vol. 2012, Article ID 589589, 11 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Gorbatyuk and O. Gorbatyuk, “Review: retinal degeneration: focus on the unfolded protein response,” Molecular Vision, vol. 19, pp. 1985–1998, 2013. View at Google Scholar
  82. S. X. Zhang, E. Sanders, S. J. Fliesler, and J. J. Wang, “Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration,” Experimental Eye Research, vol. 125, pp. 30–40, 2014. View at Publisher · View at Google Scholar · View at Scopus
  83. I. Kim, W. Xu, and J. C. Reed, “Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities,” Nature Reviews Drug Discovery, vol. 7, no. 12, pp. 1013–1030, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. T. Momoi, “Caspases involved in ER stress-mediated cell death,” Journal of Chemical Neuroanatomy, vol. 28, no. 1, pp. 101–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Bertolotti, Y. Zhang, L. M. Hendershot, H. P. Harding, and D. Ron, “Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response,” Nature Cell Biology, vol. 2, no. 6, pp. 326–332, 2000. View at Publisher · View at Google Scholar · View at Scopus
  86. H. P. Harding, Y. Zhang, A. Bertolotti, H. Zeng, and D. Ron, “Perk is essential for translational regulation and cell survival during the unfolded protein response,” Molecular Cell, vol. 5, no. 5, pp. 897–904, 2000. View at Google Scholar
  87. A. Salminen, A. Kauppinen, J. M. Hyttinen, E. Toropainen, and K. Kaarniranta, “Endoplasmic reticulum stress in age-related macular degeneration: trigger for neovascularization,” Molecular Medicine, vol. 16, no. 11-12, pp. 535–542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. J. E. Vance, “Phospholipid synthesis in a membrane fraction associated with mitochondria,” The Journal of Biological Chemistry, vol. 265, no. 3, pp. 7248–7256, 1990. View at Google Scholar
  89. G. Csordás, C. Renken, P. Várnai et al., “Structural and functional features and significance of the physical linkage between ER and mitochondria,” The Journal of Cell Biology, vol. 174, no. 7, pp. 915–921, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. J. R. Friedman, L. L. Lackner, M. West, J. R. DiBenedetto, J. Nunnari, and G. K. Voeltz, “ER tubules mark sites of mitochondrial division,” Science, vol. 334, no. 6054, pp. 358–362, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. A. Raturi and T. Simmen, “Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM),” Biochimica et Biophysica Acta, vol. 1833, no. 1, pp. 213–224, 2013. View at Publisher · View at Google Scholar · View at Scopus
  92. A. R. van Vliet, T. Verfaillie, and P. Agostinis, “New functions of mitochondria associated membranes in cellular signaling,” Biochimica et Biophysica Acta, vol. 1843, no. 10, pp. 2253–2262, 2014. View at Publisher · View at Google Scholar · View at Scopus
  93. D. W. Hailey, A. S. Rambold, P. Satpute-Krishnan et al., “Mitochondria supply membranes for autophagosome biogenesis during starvation,” Cell, vol. 141, no. 4, pp. 656–667, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. M. Hamasaki, N. Furuta, A. Matsuda et al., “Autophagosomes form at ER-mitochondria contact sites,” Nature, vol. 495, no. 7441, pp. 389–393, 2013. View at Publisher · View at Google Scholar · View at Scopus
  95. E. L. Axe, S. A. Walker, M. Manifava et al., “Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum,” The Journal of Cell Biology, vol. 182, no. 4, pp. 685–701, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. F. Korobova, V. Ramabhadran, and H. N. Higgs, “An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2,” Science, vol. 339, no. 6118, pp. 464–467, 2013. View at Publisher · View at Google Scholar · View at Scopus
  97. O. M. de Brito and L. Scorrano, “Mitofusin 2 tethers endoplasmic reticulum to mitochondria,” Nature, vol. 456, no. 7222, pp. 605–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. C. Giorgi, M. R. Wieckowski, P. P. Pandolfi, and P. Pinton, “Mitochondria associated membranes (MAMs) as critical hubs for apoptosis,” Communicative and Integrative Biology, vol. 4, no. 3, pp. 334-335, 2011. View at Publisher · View at Google Scholar
  99. C. Cardenas, R. A. Miller, I. Smith et al., “Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria,” Cell, vol. 142, no. 2, pp. 270–283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  100. W. Wang, P. G. Sreekumar, V. Valluripalli et al., “Protein polymer nanoparticles engineered as chaperones protect against apoptosis in human retinal pigment epithelial cells,” Journal of Controlled Release, vol. 191, pp. 4–14, 2014. View at Publisher · View at Google Scholar · View at Scopus
  101. C. A. Gilroy, K. M. Luginbuhl, and A. J. Chilkoti, “Controlled release of biologics for the treatment of type 2 diabetes,” Journal of Controlled Release, vol. 240, pp. 151–164, 2016. View at Publisher · View at Google Scholar · View at Scopus