Table of Contents Author Guidelines Submit a Manuscript
Parkinson’s Disease
Volume 2011 (2011), Article ID 327089, 7 pages
http://dx.doi.org/10.4061/2011/327089
Review Article

Lipopolysaccharide Animal Models for Parkinson's Disease

Department of Anatomy and Neurobiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA

Received 24 November 2010; Accepted 28 February 2011

Academic Editor: Gilles J. Guillemin

Copyright © 2011 Mei Liu and Guoying Bing. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. S. Kim and T. H. Joh, “Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease,” Experimental and Molecular Medicine, vol. 38, no. 4, pp. 333–347, 2006. View at Google Scholar · View at Scopus
  2. M. L. Block, L. Zecca, and J. S. Hong, “Microglia-mediated neurotoxicity: uncovering the molecular mechanisms,” Nature Reviews Neuroscience, vol. 8, no. 1, pp. 57–69, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, “Neuroscience: resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo,” Science, vol. 308, no. 5726, pp. 1314–1318, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. D. Davalos, J. Grutzendler, G. Yang et al., “ATP mediates rapid microglial response to local brain injury in vivo,” Nature Neuroscience, vol. 8, no. 6, pp. 752–758, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. B. P. Cho, D. Y. Song, S. Sugama et al., “Pathological dynamics of activated microglia following medial forebrain bundle transection,” Glia, vol. 53, no. 1, pp. 92–102, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. W. J. Streit, “Microglia as neuroprotective, immunocompetent cells of the CNS,” Glia, vol. 40, no. 2, pp. 133–139, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. R. B. Banati, S. E. Daniel, and S. B. Blunt, “Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson's disease,” Movement Disorders, vol. 13, no. 2, pp. 221–227, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. J. W. Langston, L. S. Forno, J. Tetrud, A. G. Reeves, J. A. Kaplan, and D. Karluk, “Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure,” Annals of Neurology, vol. 46, no. 4, pp. 598–605, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. C. F. Orr, D. B. Rowe, Y. Mizuno, H. Mori, and G. M. Halliday, “A possible role for humoral immunity in the pathogenesis of Parkinson's disease,” Brain, vol. 128, no. 11, pp. 2665–2674, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. M. L. Block and J. S. Hong, “Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism,” Progress in Neurobiology, vol. 76, no. 2, pp. 77–98, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. W. J. Streit, S. A. Walter, and N. A. Pennell, “Reactive microgliosis,” Progress in Neurobiology, vol. 57, no. 6, pp. 563–581, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. P. L. McGeer, S. Itagaki, H. Akiyama, and E. G. McGeer, “Rate of cell death in parkinsonism indicates active neuropathological process,” Annals of Neurology, vol. 24, no. 4, pp. 574–576, 1988. View at Google Scholar · View at Scopus
  13. P. L. McGeer, S. Itagaki, B. E. Boyes, and E. G. McGeer, “Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains,” Neurology, vol. 38, no. 8, pp. 1285–1291, 1988. View at Google Scholar · View at Scopus
  14. K. Imamura, N. Hishikawa, M. Sawada, T. Nagatsu, M. Yoshida, and Y. Hashizume, “Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson's disease brains,” Acta Neuropathologica, vol. 106, no. 6, pp. 518–526, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. G. Bing, X. Lu, N. A. Zheng, L. Jin, Y. Qi, and H.-C. Kim, “Microglia mediated dopaminergic cell death in the substantia nigra: a new animal model for Parkinson's disease,” Neuroscience Abstracts, vol. 24, p. 44, 1998. View at Google Scholar
  16. A. Castaño, A. J. Herrera, J. Cano, and A. Machado, “Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system,” Journal of Neurochemistry, vol. 70, no. 4, pp. 1584–1592, 1998. View at Google Scholar · View at Scopus
  17. J. Zhang, D. M. Stanton, X. V. Nguyen et al., “Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits,” Neuroscience, vol. 135, no. 3, pp. 829–838, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. L. Qin, X. Wu, M. L. Block et al., “Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration,” Glia, vol. 55, no. 5, pp. 453–462, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. D. Y. Choi, M. Liu, R. L. Hunter et al., “Striatal neuroinflammation promotes parkinsonism in rats,” PLoS One, vol. 4, no. 5, Article ID e5482, 2009. View at Publisher · View at Google Scholar · View at PubMed
  20. J. Schletter, H. Heine, A. J. Ulmer, and E. T. Rietschel, “Molecular mechanisms of endotoxin activity,” Archives of Microbiology, vol. 164, no. 6, pp. 383–389, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Nedrebø and R. K. Reed, “Different serotypes of endotoxin (lipopolysaccharide) cause different increases in albumin extravasation in rats,” Shock, vol. 18, no. 2, pp. 138–141, 2002. View at Google Scholar · View at Scopus
  22. R. J. Ulevitch and P. S. Tobias, “Recognition of Gram-negative bacteria and endotoxin by the innate immune system,” Current Opinion in Immunology, vol. 11, no. 1, pp. 19–22, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Takeda, T. Kaisho, and S. Akira, “Toll-like receptors,” Annual Review of Immunology, vol. 21, pp. 335–376, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. C. A. Janeway Jr. and R. Medzhitov, “Innate immune recognition,” Annual Review of Immunology, vol. 20, pp. 197–216, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. S. Lacroix, D. Feinstein, and S. Rivest, “The bacterial endotoxin lipopolysaccharide has the ability to target the brain in upregulating its membrane CD14 receptor within specific cellular populations,” Brain Pathology, vol. 8, no. 4, pp. 625–640, 1998. View at Google Scholar · View at Scopus
  26. S. Lehnardt, L. Massillon, P. Follett et al., “Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8514–8519, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. K. Hoshino, O. Takeuchi, T. Kawai et al., “Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide evidence for TLR4 as the Lps gene product,” Journal of Immunology, vol. 162, no. 7, pp. 3749–3752, 1999. View at Google Scholar · View at Scopus
  28. I. Niehaus and J. H. Lange, “Endotoxin: is it an environmental factor in the cause of Parkinson's disease?” Occupational and Environmental Medicine, vol. 60, no. 5, p. 378, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. I. Stewart, P. J. Schluter, and G. R. Shaw, “Cyanobacterial lipopolysaccharides and human health—a review,” Environmental Health, vol. 5, article 7, 2006. View at Publisher · View at Google Scholar · View at PubMed
  30. A. M. T. da Silva, H. C. Kaulbach, F. S. Chuidian, D. R. Lambert, A. F. Suffredini, and R. L. Danner, “Brief report: shock and multiple-organ dysfunction after self-administration of salmonella endotoxin,” The New England Journal of Medicine, vol. 328, no. 20, pp. 1457–1461, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. D. M. Bronstein, I. Perez-Otano, V. Sun et al., “Glia-dependent neurotoxicity and neuroprotection in mesencephalic cultures,” Brain Research, vol. 704, no. 1, pp. 112–116, 1995. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Liu, L. Du, and J. S. Hong, “Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation,” Journal of Pharmacology and Experimental Therapeutics, vol. 293, no. 2, pp. 607–617, 2000. View at Google Scholar · View at Scopus
  33. B. Xing, T. Xin, R. L. Hunter, and G. Bing, “Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/ Akt,” Journal of Neuroinflammation, vol. 5, article 4, 2008. View at Publisher · View at Google Scholar · View at PubMed
  34. L. Qin, Y. Liu, T. Wang et al., “NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia,” Journal of Biological Chemistry, vol. 279, no. 2, pp. 1415–1421, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. S. C. Lee, W. Liu, D. W. Dickson, C. F. Brosnan, and J. W. Berman, “Cytokine production by human fetal microglia and astrocytes: differential induction by lipopolysaccharide and IL-1β,” Journal of Immunology, vol. 150, no. 7, pp. 2659–2667, 1993. View at Google Scholar · View at Scopus
  36. C. C. Chao, S. Hu, T. W. Molitor, E. G. Shaskan, and P. K. Peterson, “Activated microglia mediate neuronal cell injury via a nitric oxide mechanism,” Journal of Immunology, vol. 149, no. 8, pp. 2736–2741, 1992. View at Google Scholar · View at Scopus
  37. A. J. Herrera, A. Castaño, J. L. Venero, J. Cano, and A. Machado, “The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system,” Neurobiology of Disease, vol. 7, no. 4, pp. 429–447, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. X. Lu, G. Bing, and T. Hagg, “Naloxone prevents microglia-induced degeneration of dopaminergic substantia nigra neurons in adult rats,” Neuroscience, vol. 97, no. 2, pp. 285–291, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. M. D. C. Hernández-Romero, S. Argüelles, R. F. Villarán et al., “Simvastatin prevents the inflammatory process and the dopaminergic degeneration induced by the intranigral injection of lipopolysaccharide,” Journal of Neurochemistry, vol. 105, no. 2, pp. 445–459, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. T. Arimoto, D. Y. Choi, X. Lu et al., “Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra,” Neurobiology of Aging, vol. 28, no. 6, pp. 894–906, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. P. F. Hsieh, L. G. Chia, D. R. Ni et al., “Behavior, neurochemistry and histology after intranigral lipopolysaccharide injection,” NeuroReport, vol. 13, no. 3, pp. 277–280, 2002. View at Google Scholar · View at Scopus
  42. D. Y. Choi, J. Zhang, and G. Bing, “Aging enhances the neuroinflammatory response and α-synuclein nitration in rats,” Neurobiology of Aging, vol. 31, no. 9, pp. 1649–1653, 2010. View at Publisher · View at Google Scholar · View at PubMed
  43. W. Zhang, T. Wang, Z. Pei et al., “Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson's disease,” FASEB Journal, vol. 19, no. 6, pp. 533–542, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. R. L. Hunter, B. Cheng, D. Y. Choi et al., “Intrastriatal lipopolysaccharide injection induces Parkinsonism in C57/B6 mice,” Journal of Neuroscience Research, vol. 87, no. 8, pp. 1913–1921, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. R. L. Hunter, N. Dragicevic, K. Seifert et al., “Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system,” Journal of Neurochemistry, vol. 100, no. 5, pp. 1375–1386, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. R. L. Hunter, D. Y. Choi, J. F. Kincer, W. A. Cass, G. Bing, and D. M. Gash, “Fenbendazole treatment may influence lipopolysaccharide effects in rat brain,” Comparative Medicine, vol. 57, no. 5, pp. 487–492, 2007. View at Google Scholar · View at Scopus
  47. U. Bickel, B. Grave, Y. S. Kang, A. Del Rey, and K. Voigt, “No increase in blood-brain barrier permeability after intraperitoneal injection of endotoxin in the rat,” Journal of Neuroimmunology, vol. 85, no. 2, pp. 131–136, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. W. Pan and A. J. Kastin, “TNFα transport across the blood-brain barrier is abolished in receptor knockout mice,” Experimental Neurology, vol. 174, no. 2, pp. 193–200, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. W. A. Banks, “Blood-brain barrier transport of cytokines: a mechanism for neuropathology,” Current Pharmaceutical Design, vol. 11, no. 8, pp. 973–984, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. S. L. Byler, G. W. Boehm, J. D. Karp et al., “Systemic lipopolysaccharide plus MPTP as a model of dopamine loss and gait instability in C57Bl/6J mice,” Behavioural Brain Research, vol. 198, no. 2, pp. 434–439, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. P. L. McGeer, C. Schwab, A. Parent, and D. Doudet, “Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration,” Annals of Neurology, vol. 54, no. 5, pp. 599–604, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. Y. Ouchi, E. Yoshikawa, Y. Sekine et al., “Microglial activation and dopamine terminal loss in early Parkinson's disease,” Annals of Neurology, vol. 57, no. 2, pp. 168–175, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. B. Liu, J. W. Jiang, B. C. Wilson et al., “Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigral injection of lipopolysaccharide,” Journal of Pharmacology and Experimental Therapeutics, vol. 295, no. 1, pp. 125–132, 2000. View at Google Scholar · View at Scopus
  54. L. Qian, M. L. Block, S. J. Wei et al., “Interleukin-10 protects lipopolysaccharide-induced neurotoxicity in primary midbrain cultures by inhibiting the function of NADPH oxidase,” Journal of Pharmacology and Experimental Therapeutics, vol. 319, no. 1, pp. 44–52, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. R. L. Hunter, D. Y. Choi, S. A. Ross, and G. Bing, “Protective properties afforded by pioglitazone against intrastriatal LPS in Sprague-Dawley rats,” Neuroscience Letters, vol. 432, no. 3, pp. 198–201, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. B. Xing, M. Liu, and G. Bing, “Neuroprotection with pioglitazone against LPS insult on dopaminergic neurons may be associated with its inhibition of NF-κB and JNK activation and suppression of COX-2 activity,” Journal of Neuroimmunology, vol. 192, no. 1-2, pp. 89–98, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. M. Tomás-Camardiel, I. Rite, A. J. Herrera et al., “Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system,” Neurobiology of Disease, vol. 16, no. 1, pp. 190–201, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. L. W. Fan, YI. Pang, S. Lin et al., “Minocycline reduces lipopolysaccharide-induced neurological dysfunction and brain injury in the neonatal rat,” Journal of Neuroscience Research, vol. 82, no. 1, pp. 71–82, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. S. M. Lee, T. Y. Yune, S. J. Kim et al., “Minocycline inhibits apoptotic cell death via attenuation of TNF-α expression following iNOS/NO induction by lipopolysaccharide in neuron/glia co-cultures,” Journal of Neurochemistry, vol. 91, no. 3, pp. 568–578, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. B. Ravina, “A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease,” Neurology, vol. 66, no. 5, pp. 664–671, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. K. Kieburtz, B. Tilley, B. Ravina et al., “A pilot clinical trial of creatine and minocycline in early Parkinson disease: 18-month results,” Clinical Neuropharmacology, vol. 31, no. 3, pp. 141–150, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. M. O. Griffin, E. Fricovsky, G. Ceballos, and F. Villarreal, “Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature,” American Journal of Physiology, vol. 299, no. 3, pp. C539–C548, 2010. View at Publisher · View at Google Scholar · View at PubMed
  63. B. Xing, T. Xin, R. L. Hunter, and G. Bing, “Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt,” Journal of Neuroinflammation, vol. 5, article 4, 2008. View at Publisher · View at Google Scholar · View at PubMed
  64. L. Zecca, H. Wilms, S. Geick et al., “Human neuromelanin induces neuroinflammation and neurodegeneration in the rat substantia nigra: implications for Parkinson's disease,” Acta Neuropathologica, vol. 116, no. 1, pp. 47–55, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. H. M. Gao, P. T. Kotzbauer, K. Uryu, S. Leight, J. Q. Trojanowski, and V. M. Y. Lee, “Neuroinflammation and oxidation/nitration of α-synuclein linked to dopaminergic neurodegeneration,” Journal of Neuroscience, vol. 28, no. 30, pp. 7687–7698, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. L. Zecca, A. Stroppolo, A. Gatti et al., “The role of iron and molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 26, pp. 9843–9848, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. M. Mittelbronn, K. Dietz, H. J. Schluesener, and R. Meyermann, “Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude,” Acta Neuropathologica, vol. 101, no. 3, pp. 249–255, 2001. View at Google Scholar · View at Scopus
  68. L. J. Lawson, V. H. Perry, P. Dri, and S. Gordon, “Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain,” Neuroscience, vol. 39, no. 1, pp. 151–170, 1990. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Miklossy, “Chronic inflammation and amyloidogenesis in Alzheimer's disease—role of spirochetes,” Journal of Alzheimer's Disease, vol. 13, no. 4, pp. 381–391, 2008. View at Google Scholar · View at Scopus
  70. A. D. Roth, G. Ramírez, R. Alarcón, and R. von Bernhardi, “Oligodendrocytes damage in Alzheimer's disease: beta amyloid toxicity and inflammation,” Biological Research, vol. 38, no. 4, pp. 381–387, 2005. View at Google Scholar · View at Scopus