Table of Contents Author Guidelines Submit a Manuscript
Pulmonary Medicine
Volume 2013, Article ID 291375, 6 pages
http://dx.doi.org/10.1155/2013/291375
Research Article

Vest Chest Physiotherapy Airway Clearance is Associated with Nitric Oxide Metabolism

1Pulmonary, Critical Care, Sleep & Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA
2Research Service, Department of Veterans Affairs Omaha-Western Iowa Health Care System, 4101 Woolworth Avenue, Omaha, NE 68105, USA
3Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-7850, USA

Received 18 July 2013; Revised 1 October 2013; Accepted 2 October 2013

Academic Editor: Charlie Strange

Copyright © 2013 Joseph H. Sisson et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. A. Flume, K. A. Robinson, B. P. O'Sullivan et al., “Cystic fibrosis pulmonary guidelines: airway clearance therapies,” Respiratory Care, vol. 54, no. 4, pp. 522–537, 2009. View at Google Scholar · View at Scopus
  2. C. van der Schans, A. Prasad, and E. Main, “Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis,” Cochrane Database of Systematic Reviews, no. 2, p. CD001401, 2000. View at Google Scholar · View at Scopus
  3. L. G. Hansen and W. J. Warwick, “High-frequency chest compression system to aid in clearance of mucus from the lung,” Biomedical Instrumentation and Technology, vol. 24, no. 4, pp. 289–294, 1990. View at Google Scholar · View at Scopus
  4. W. M. Abraham, A. Ahmed, I. Serebriakov et al., “Whole-body periodic acceleration modifies experimental asthma in sheep,” American Journal of Respiratory and Critical Care Medicine, vol. 174, no. 7, pp. 743–752, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. W. M. Abraham, A. Ahmed, I. Serebriakov et al., “Periodic acceleration via nitric oxide release modifies antigen-induced airway responses in sheep,” American Journal of Respiratory and Critical Care Medicine, vol. 169, article A321, 2004. View at Google Scholar
  6. D. Bilton, G. Canny, S. Conway et al., “Pulmonary exacerbation: towards a definition for use in clinical trials. Report from the EuroCareCF Working Group on outcome parameters in clinical trials,” Journal of Cystic Fibrosis, vol. 10, no. 2, pp. S79–S81, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. H. Sisson, A. J. Yonkers, and R. H. Waldman, “Effects of guaifenesin on nasal mucociliary clearance and ciliary beat frequency in healthy volunteers,” Chest, vol. 107, no. 3, pp. 747–751, 1995. View at Google Scholar · View at Scopus
  8. F. Hoffmeyer, M. Raulf-Heimsoth, and T. Bruning, “Exhaled breath condensate and airway inflammation,” Current Opinion in Allergy and Clinical Immunology, vol. 9, no. 1, pp. 16–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Jain, I. Rubinstein, R. A. Robbins, K. L. Leise, and J. H. Sisson, “Modulation of airway epithelial cell ciliary beat frequency by nitric oxide,” Biochemical and Biophysical Research Communications, vol. 191, no. 1, pp. 83–88, 1993. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Zhan, D. Li, and R. A. Johns, “Immunohistochemical evidence for the NO cGMP signaling pathway in respiratory ciliated epithelia of rat,” Journal of Histochemistry and Cytochemistry, vol. 47, no. 11, pp. 1369–1374, 1999. View at Google Scholar · View at Scopus
  11. C. Xue, S. J. Botkin, and R. A. Johns, “Localization of endothelial NOS at the basal microtubule membrane in ciliated epithelium of rat lung,” Journal of Histochemistry and Cytochemistry, vol. 44, no. 5, pp. 463–471, 1996. View at Google Scholar · View at Scopus
  12. J. Tamaoki, A. Chiyotani, M. Kondo, and K. Konno, “Role of NO generation in β-adrenoceptor-mediated stimulation of rabbit airway ciliary motility,” American Journal of Physiology: Cell Physiology, vol. 268, no. 6, pp. C1342–C1347, 1995. View at Google Scholar · View at Scopus
  13. V. Suresh, J. D. Mih, and S. C. George, “Measurement of IL-13-induced iNOS-derived gas phase nitric oxide in human bronchial epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 37, no. 1, pp. 97–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Sanderson and E. R. Dirksen, “Mechanosensitivity of cultured ciliated cells from the mammalian respiratory tract: implications for the regulation of mucociliary transport,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 19, pp. 7302–7306, 1986. View at Google Scholar · View at Scopus
  15. G. S. Barr and A. K. Tewary, “Alteration of airflow and mucociliary transport in normal subjects,” Journal of Laryngology and Otology, vol. 107, no. 7, pp. 603–604, 1993. View at Google Scholar · View at Scopus
  16. S. Boitano, E. R. Dirksen, and M. J. Sanderson, “Intercellular propagation of calcium waves mediated by inositol trisphosphate,” Science, vol. 258, no. 5080, pp. 292–295, 1992. View at Google Scholar · View at Scopus
  17. J. A. Felix, M. L. Woodruff, and E. R. Dirksen, “Stretch increases inositol 1,4,5-trisphosphate concentration in airway epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 14, no. 3, pp. 296–301, 1996. View at Google Scholar · View at Scopus
  18. M. Salathe, T. Lieb, and R. J. Bookman, “Lack of nitric oxide involvement in cholinergic modulation of ovine ciliary beat frequency,” Journal of Aerosol Medicine, vol. 13, no. 3, pp. 219–229, 2000. View at Google Scholar · View at Scopus
  19. J. Alberty, W. Stoll, and C. Rudack, “The effect of endogenous nitric oxide on mechanical ciliostimulation of human nasal mucosa,” Clinical and Experimental Allergy, vol. 36, no. 10, pp. 1254–1259, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Grasemann, I. Ioannidis, R. P. Tomkiewicz, H. de Groot, B. K. Rubin, and F. Ratjen, “Nitric oxide metabolites in cystic fibrosis lung disease,” Archives of Disease in Childhood, vol. 78, no. 1, pp. 49–53, 1998. View at Google Scholar · View at Scopus