Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2010, Article ID 325183, 16 pages
http://dx.doi.org/10.1155/2010/325183
Review Article

Gene Expression Changes Induced by PPAR Gamma Agonists in Animal and Human Liver

1UMR INSERM U991, Faculté des Sciences Pharmaceutiques et Biologiques, 35043 Rennes, France
2Université de Rennes 1, 35065 Rennes, France
3Biologie Servier, 45520 Gidy, France
4Institut de Recherches Servier, 92150 Suresnes, France
5Institut de Recherches Servier, 92400 Courbevoie, France

Received 8 June 2010; Accepted 15 July 2010

Academic Editor: Barbara Abbott

Copyright © 2010 Alexandra Rogue et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Low, M. C. Chin, and M. Deurenberg-Yap, “Review on epidemic of obesity,” Annals of the Academy of Medicine Singapore, vol. 38, no. 1, pp. 57–59, 2009. View at Google Scholar · View at Scopus
  2. B. Staels and J.-C. Fruchart, “Therapeutic roles of peroxisome proliferator-activated receptor agonists,” Diabetes, vol. 54, no. 8, pp. 2460–2470, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Michalik, J. Auwerx, J. P. Berger et al., “International union of pharmacology. LXI. Peroxisome proliferator-activated receptors,” Pharmacological Reviews, vol. 58, no. 4, pp. 726–741, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. L. Fajas, D. Auboeuf, E. Raspé et al., “The organization, promoter analysis, and expression of the human PPARγ gene,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 18779–18789, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Tanaka, J. Yamamoto, S. Iwasaki et al., “Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15924–15929, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Yu, K. Markan, K. A. Temple, D. Deplewski, M. J. Brady, and R. N. Cohen, “The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor γ transcriptional activity and repress 3T3-L1 adipogenesis,” Journal of Biological Chemistry, vol. 280, no. 14, pp. 13600–13605, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. J. N. Feige, L. Gelman, L. Michalik, B. Desvergne, and W. Wahli, “From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions,” Progress in Lipid Research, vol. 45, no. 2, pp. 120–159, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Grommes, G. E. Landreth, and M. T. Heneka, “Antineoplastic effects of peroxisome proliferator-activated receptor γ agonists,” Lancet Oncology, vol. 5, no. 7, pp. 419–429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. D. D. Sears, A. Hsiao, J. M. Ofrecio, J. Chapman, W. He, and J. M. Olefsky, “Selective modulation of promoter recruitment and transcriptional activity of PPARγ,” Biochemical and Biophysical Research Communications, vol. 364, no. 3, pp. 515–521, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Olefsky, “Treatment of insulin resistance with peroxisome proliferator-activated receptor γ agonists,” Journal of Clinical Investigation, vol. 106, no. 4, pp. 467–472, 2000. View at Google Scholar · View at Scopus
  11. L. Chao, B. Marcus-Samuels, M. M. Mason et al., “Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones,” Journal of Clinical Investigation, vol. 106, no. 10, pp. 1221–1228, 2000. View at Google Scholar · View at Scopus
  12. L. Guo, L. Zhang, Y. Sun et al., “Differences in hepatotoxicity and gene expression profiles by anti-diabetic PPAR γ agonists on rat primary hepatocytes and human HepG2 cells,” Molecular Diversity, vol. 10, no. 3, pp. 349–360, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. K. K. Brown, B. R. Henke, S. G. Blanchard et al., “A novel N-aryl tyrosine activator of peroxisome proliferator-activated receptor-γ reverses the diabetic phenotype of the Zucker diabetic fatty rat,” Diabetes, vol. 48, no. 7, pp. 1415–1424, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Fiévet, J.-C. Fruchart, and B. Staels, “PPARα and PPARγ dual agonists for the treatment of type 2 diabetes and the metabolic syndrome,” Current Opinion in Pharmacology, vol. 6, no. 6, pp. 606–614, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. L. S. Higgins and A. M. Depaoli, “Selective peroxisome proliferator-activated receptor γ (PPARγ) modulation as a strategy for safer therapeutic PPARγ activation,” American Journal of Clinical Nutrition, vol. 91, no. 1, pp. 267S–272S, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Michalik, B. Desvergne, and W. Wahli, “Peroxisome-proliferator-activated receptors and cancers: complex stories,” Nature Reviews Cancer, vol. 4, no. 1, pp. 61–70, 2004. View at Google Scholar · View at Scopus
  17. P. B. Watkins and R. W. Whitcomb, “Hepatic dysfunction associated with troglitazone,” New England Journal of Medicine, vol. 338, no. 13, pp. 916–917, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. S. P. Anderson, C. Dunn, A. Laughter et al., “Overlapping transcriptional programs regulated by the nuclear receptors peroxisome proliferator-activated receptor α, retinoid X receptor, and liver X receptor in mouse liver,” Molecular Pharmacology, vol. 66, no. 6, pp. 1440–1452, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Guo, H. Fang, J. Collins et al., “Differential gene expression in mouse primary hepatocytes exposed to the peroxisome proliferator-activated receptor α agonists,” BMC Bioinformatics, vol. 7, supplement 2, article S18, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. K. Hamadeh, P. R. Bushel, S. Jayadev et al., “Gene expression analysis reveals chemical-specific profiles,” Toxicological Sciences, vol. 67, no. 2, pp. 219–231, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Rakhshandehroo, G. Hooiveld, M. Müller, and S. Kersten, “Comparative analysis of gene regulation by the transcription factor PPARα between mouse and human,” PLoS ONE, vol. 4, no. 8, article e6796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Richert, C. Lamboley, C. Viollon-Abadie et al., “Effects of clofibric acid on mRNA expression profiles in primary cultures of rat, mouse and human hepatocytes,” Toxicology and Applied Pharmacology, vol. 191, no. 2, pp. 130–146, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. K. S. Frederiksen, E. M. Wulff, P. Sauerberg, J. P. Mogensen, L. Jeppesen, and J. Fleckner, “Prediction of PPAR-α ligand-mediated physiological changes using gene expression profiles,” Journal of Lipid Research, vol. 45, no. 3, pp. 592–601, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. R. A. Memon, L. H. Tecott, K. Nonogaki et al., “Up-regulation of peroxisome proliferator-activated receptors (PPAR-α) and PPAR-γ messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-γ-responsive adipose tissue-specific genes in the liver of obese diabetic mice,” Endocrinology, vol. 141, no. 11, pp. 4021–4031, 2000. View at Google Scholar · View at Scopus
  25. J. G. DeLuca, T. W. Doebber, L. J. Kelly et al., “Evidence for peroxisome proliferator-activated receptor (PPAR)α-independent peroxisome proliferation: effects of PPARγ/δ-specific agonists in PPARα-null mice,” Molecular Pharmacology, vol. 58, no. 3, pp. 470–476, 2000. View at Google Scholar · View at Scopus
  26. R. P. Brun, P. Tontonoz, B. M. Forman et al., “Differential activation of adipogenesis by multiple PPAR isoforms,” Genes and Development, vol. 10, no. 8, pp. 974–984, 1996. View at Google Scholar · View at Scopus
  27. S. Yu, K. Matsusue, P. Kashireddy et al., “Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor γ1 (PPARγ1) overexpression,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 498–505, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Yu, N. Viswakarma, S. K. Batra, M. Sambasiva Rao, and J. K. Reddy, “Identification of promethin and PGLP as two novel up-regulated genes in PPARγ1-induced adipogenic mouse liver,” Biochimie, vol. 86, no. 11, pp. 743–761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Gavrilova, M. Haluzik, K. Matsusue et al., “Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass,” Journal of Biological Chemistry, vol. 278, no. 36, pp. 34268–34276, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. J. M. Way, W. W. Harrington, K. K. Brown et al., “Comprehensive messenger ribonucleic acid profiling reveals that peroxisome proliferator-activated receptor γ activation has coordinate effects on gene expression in multiple insulin-sensitive tissues,” Endocrinology, vol. 142, no. 3, pp. 1269–1277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. C. F. Burant, S. Sreenan, K.-I. Hirano et al., “Troglitazone action is independent of adipose tissue,” Journal of Clinical Investigation, vol. 100, no. 11, pp. 2900–2908, 1997. View at Google Scholar · View at Scopus
  32. M. Bedoucha, E. Atzpodien, and U. A. Boelsterli, “Diabetic KKAy mice exhibit increased hepatic PPARγ1 gene expression and develop hepatic steatosis upon chronic treatment with antidiabetic thiazolidinediones,” Journal of Hepatology, vol. 35, no. 1, pp. 17–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. G. F. Davies, R. L. Khandelwal, and W. J. Roesler, “Troglitazone induces expression of PPARγ in liver,” Molecular Cell Biology Research Communications, vol. 2, no. 3, pp. 202–208, 1999. View at Google Scholar · View at Scopus
  34. B. Lauer, G. Tuschl, M. Kling, and S. O. Mueller, “Species-specific toxicity of diclofenac and troglitazone in primary human and rat hepatocytes,” Chemico-Biological Interactions, vol. 179, no. 1, pp. 17–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Sahi, G. Hamilton, M. Sinz et al., “Effect of troglitazone on cytochrome P450 enzymes in primary cultures of human and rat hepatocytes,” Xenobiotica, vol. 30, no. 3, pp. 273–284, 2000. View at Google Scholar · View at Scopus
  36. G. Vansant, P. Pezzoli, R. Saiz et al., “Gene expression analysis of troglitazone reveals its impact on multiple pathways in cell culture: a case for in vitro platforms combined with gene expression analysis for early (idiosyncratic) toxicity screening,” International Journal of Toxicology, vol. 25, no. 2, pp. 85–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. S. E. Schadinger, N. L. R. Bucher, B. M. Schreiber, and S. R. Farmer, “PPARγ2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes,” American Journal of Physiology, vol. 288, no. 6, pp. E1195–E1205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Li, T. Kaneko, Y. Wang, L.-Q. Qin, P.-Y. Wang, and A. Sato, “Troglitazone enhances the hepatotoxicity of acetaminophen by inducing CYP3A in rats,” Toxicology, vol. 176, no. 1-2, pp. 91–100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Funk, C. Ponelle, G. Scheuermann, and M. Pantze, “Cholestatic potential of troglitazone as a possible factor contributing to troglitazone-induced hepatotoxicity: in vivo and in vitro interaction at the canalicular bile salt export pump (Bsep) in the rat,” Molecular Pharmacology, vol. 59, no. 3, pp. 627–635, 2001. View at Google Scholar · View at Scopus
  40. M. T. Smith, “Mechanisms of troglitazone hepatotoxicity,” Chemical Research in Toxicology, vol. 16, no. 6, pp. 679–687, 2003. View at Google Scholar · View at Scopus
  41. Y. H. Lee, M. C. M. Chung, Q. Lin, and U. A. Boelsterli, “Troglitazone-induced hepatic mitochondrial proteome expression dynamics in heterozygous Sod2+/ mice: two-stage oxidative injury,” Toxicology and Applied Pharmacology, vol. 231, no. 1, pp. 43–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Sigrist, M. Bedoucha, and U. A. Boelsterli, “Down-regulation by troglitazone of hepatic tumor necrosis factor-α and interleukin-6 mRNA expression in a murine model of non-insulin-dependent diabetes,” Biochemical Pharmacology, vol. 60, no. 1, pp. 67–75, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Ricote, A. C. Li, T. M. Willson, C. J. Kelly, and C. K. Glass, “The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation,” Nature, vol. 391, no. 6662, pp. 79–82, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Matsusue, M. Haluzik, G. Lambert et al., “Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes,” Journal of Clinical Investigation, vol. 111, no. 5, pp. 737–747, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. U. Edvardsson, M. Bergström, M. Alexandersson, K. Bamberg, B. Ljung, and B. Dahllöf, “Rosiglitazone (BRL49653), a PPARγ-selective agonist, causes peroxisome proliferator-like liver effects in obese mice,” Journal of Lipid Research, vol. 40, no. 7, pp. 1177–1184, 1999. View at Google Scholar · View at Scopus
  46. A. Vidal-Puig, M. Jimenez-Liñan, B. B. Lowell et al., “Regulation of PPAR γ gene expression by nutrition and obesity in rodents,” Journal of Clinical Investigation, vol. 97, no. 11, pp. 2553–2561, 1996. View at Google Scholar · View at Scopus
  47. B. M. Spiegelman, “PPAR-γ: adipogenic regulator and thiazolidinedione receptor,” Diabetes, vol. 47, no. 4, pp. 507–514, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Singh Ahuja, S. Liu, D. L. Crombie et al., “Differential effects of rexinoids and thiazolidinediones on metabolic gene expression in diabetic rodents,” Molecular Pharmacology, vol. 59, no. 4, pp. 765–773, 2001. View at Google Scholar · View at Scopus
  49. A. Suzuki, T. Yasuno, H. Kojo, J. Hirosumi, S. Mutoh, and Y. Notsu, “Alteration in expression profiles of a series of diabetes-related genes in db/db mice following treatment with thiazolidinediones,” Japanese Journal of Pharmacology, vol. 84, no. 2, pp. 113–123, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Hofmann, K. Lorenz, D. Williams, B. J. Palazuk, and J. R. Colca, “Insulin sensitization in diabetic rat liver by an antihyperglycemic agent,” Metabolism, vol. 44, no. 3, pp. 384–389, 1995. View at Google Scholar · View at Scopus
  51. D. Auboeuf, J. Rieusset, L. Fajas et al., “Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-α in humans: no alteration in adipose tissue of obese and NIDDM patients,” Diabetes, vol. 46, no. 8, pp. 1319–1327, 1997. View at Google Scholar · View at Scopus
  52. M. Abdelrahman, A. Sivarajah, and C. Thiemermann, “Beneficial effects of PPAR-γ ligands in ischemia-reperfusion injury, inflammation and shock,” Cardiovascular Research, vol. 65, no. 4, pp. 772–781, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Kolak, H. Yki-Järvinen, K. Kannisto et al., “Effects of chronic rosiglitazone therapy on gene expression in human adipose tissue in vivo in patients with type 2 diabetes,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 2, pp. 720–724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. A. M. Sharma and B. Staels, “Review: peroxisome proliferator-activated receptor γ and adipose tissue—understanding obesity-related changes in regulation of lipid and glucose metabolism,” Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 2, pp. 386–395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Sánchez-Hidalgo, A. R. Martín, I. Villegas, and C. Alarcón De La Lastra, “Rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma, reduces chronic colonic inflammation in rats,” Biochemical Pharmacology, vol. 69, no. 12, pp. 1733–1744, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Ialenti, G. Grassia, P. Di Méglio, P. Maffia, M. Di Rosa, and A. Ianaro, “Mechanism of the anti-inflammatory effect of thiazolidinediones: relationship with the glucocorticoid pathway,” Molecular Pharmacology, vol. 67, no. 5, pp. 1620–1628, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Xu, G. T. Barnes, Q. Yang et al., “Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1821–1830, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. A. L. Hevener, J. M. Olefsky, D. Reichart et al., “Macrophage PPARγ is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones,” Journal of Clinical Investigation, vol. 117, no. 6, pp. 1658–1669, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Loviscach, N. Rehman, L. Carter et al., “Distribution of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action,” Diabetologia, vol. 43, no. 3, pp. 304–311, 2000. View at Google Scholar · View at Scopus
  60. A. L. Hevener, W. He, Y. Barak et al., “Muscle-specific Pparg deletion causes insulin resistance,” Nature Medicine, vol. 9, no. 12, pp. 1491–1497, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. N. K. Verma, J. Singh, and C. S. Dey, “PPAR-γ expression modulates insulin sensitivity in C2C12 skeletal muscle cells,” British Journal of Pharmacology, vol. 143, no. 8, pp. 1006–1013, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. R. H. Amin, S. T. Mathews, H. S. Camp, L. Ding, and T. Leff, “Selective activation of PPARγ in skeletal muscle induces endogenous production of adiponectin and protects mice from diet-induced insulin resistance,” American Journal of Physiology, vol. 298, no. 1, pp. E28–E37, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. A. W. Norris, L. Chen, S. J. Fisher et al., “Muscle-specific PPARγ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones,” Journal of Clinical Investigation, vol. 112, no. 4, pp. 608–618, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. Y. Masubuchi, S. Kano, and T. Horie, “Mitochondrial permeability transition as a potential determinant of hepatotoxicity of antidiabetic thiazolidinediones,” Toxicology, vol. 222, no. 3, pp. 233–239, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Sahi, C. B. Black, G. A. Hamilton et al., “Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition,” Drug Metabolism and Disposition, vol. 31, no. 4, pp. 439–446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Guillouzo, “Liver cell models in in vitro toxicology,” Environmental Health Perspectives, vol. 106, no. 2, pp. 511–532, 1998. View at Google Scholar · View at Scopus
  67. P. Gripon, S. Rumin, S. Urban et al., “Infection of a human hepatoma cell line by hepatitis B virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 24, pp. 15655–15660, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. V. Cerec, D. Glaise, D. Garnier et al., “Transdifferentiation of hepatocyte-like cells from the human hepatoma hepaRG cell line through bipotent progenitor,” Hepatology, vol. 45, no. 4, pp. 957–967, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. A. Guillouzo and C. Guguen-Guillouzo, “Evolving concepts in liver tissue modeling and implications for in vitro toxicology,” Expert Opinion on Drug Metabolism and Toxicology, vol. 4, no. 10, pp. 1279–1294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Aninat, A. Piton, D. Glaise et al., “Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells,” Drug Metabolism and Disposition, vol. 34, no. 1, pp. 75–83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. J. Sahi, C. B. Black, G. A. Hamilton et al., “Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition,” Drug Metabolism and Disposition, vol. 31, no. 4, pp. 439–446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. V. Ramachandran, V. E. Kostrubsky, B. J. Komoroski et al., “Troglitazone increases cytochrome P-450 3A protein and activity in primary cultures of human hepatocytes,” Drug Metabolism and Disposition, vol. 27, no. 10, pp. 1194–1199, 1999. View at Google Scholar · View at Scopus
  73. V. E. Kostrubsky, J. F. Sinclair, V. Ramachandran et al., “The role of conjugation in hepatotoxicity of troglitazone in human and porcine hepatocyte cultures,” Drug Metabolism and Disposition, vol. 28, no. 10, pp. 1192–1197, 2000. View at Google Scholar · View at Scopus
  74. K. P. Kanebratt and T. B. Andersson, “HepaRG cells as an in vitro model for evaluation of cytochrome P450 induction in humans,” Drug Metabolism and Disposition, vol. 36, no. 1, pp. 137–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Yu, L. Qiao, L. Zimmermann et al., “Troglitazone inhibits tumor growth in hepatocellular carcinoma in vitro and in vivo,” Hepatology, vol. 43, no. 1, pp. 134–143, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. Y. Edling, L. K. Sivertsson, A. Butura, M. Ingelman-Sundberg, and M. Ek, “Increased sensitivity for troglitazone-induced cytotoxicity using a human in vitro co-culture model,” Toxicology in Vitro, vol. 23, no. 7, pp. 1387–1395, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. M.-Y. Li, H. Deng, J.-M. Zhao, D. Dai, and X.-Y. Tan, “Peroxisome proliferator-activated receptor gamma ligands inhibit cell growth and induce apoptosis in human liver cancer BEL-7402 cell,” World Journal of Gastroenterology, vol. 9, no. 8, pp. 1683–1688, 2003. View at Google Scholar · View at Scopus
  78. A. Klopotek, F. Hirche, and K. Eder, “PPARγ ligand troglitazone lowers cholesterol synthesis in HepG2 and Caco-2 cells via a reduced concentration of nuclear SREBP-2,” Experimental Biology and Medicine, vol. 231, no. 8, pp. 1365–1372, 2006. View at Google Scholar · View at Scopus
  79. R. Maniratanachote, K. Minami, M. Katoh, M. Nakajima, and T. Yokoi, “Chaperone proteins involved in troglitazone-induced toxicity in human hepatoma cell lines,” Toxicological Sciences, vol. 83, no. 2, pp. 293–302, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Koga, M. Harada, M. Ohtsubo et al., “Troglitazone induces p27Kip1-associated cell-cycle arrest through down-regulating Skp2 in human hepatoma cells,” Hepatology, vol. 37, no. 5, pp. 1086–1096, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. H. Koga, S. Sakisaka, M. Harada et al., “Involvement of p21WAF1/Cip1, p27Kip1, and p18INK4c in troglitazone-induced cell-cycle arrest in human hepatoma cell lines,” Hepatology, vol. 33, no. 5, pp. 1087–1097, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. C. B. Lambert, C. Spire, N. Claude, and A. Guillouzo, “Dose- and time-dependent effects of phenobarbital on gene expression profiling in human hepatoma HepaRG cells,” Toxicology and Applied Pharmacology, vol. 234, no. 3, pp. 345–360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. M.-A. Bae, H. Rhee, and B. J. Song, “Troglitazone but not rosiglitazone induces G1 cell cycle arrest and apoptosis in human and rat hepatoma cell lines,” Toxicology Letters, vol. 139, no. 1, pp. 67–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. C. L. Chaffer, D. M. Thomas, E. W. Thompson, and E. D. Williams, “PPARγ-independent induction of growth arrest and apoptosis in prostate and bladder carcinoma,” BMC Cancer, vol. 6, article 53, 2006. View at Publisher · View at Google Scholar · View at Scopus
  85. F. Yin, D. Bruemmer, F. Blaschke, W. A. Hsueh, R. E. Law, and A. J. Van Herle, “Signaling pathways involved in induction of GADD45 gene expression and apoptosis by troglitazone in human MCF-7 breast carcinoma cells,” Oncogene, vol. 23, no. 26, pp. 4614–4623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. T. Satoh, M. Toyoda, H. Hoshino et al., “Activation of peroxisome proliferator-activated receptor-γ stimulates the growth arrest and DNA-damage inducible 153 gene in non-small cell lung carcinoma cells,” Oncogene, vol. 21, no. 14, pp. 2171–2180, 2002. View at Publisher · View at Google Scholar · View at Scopus
  87. L. D. Kier, R. Neft, L. Tang et al., “Applications of microarrays with toxicologically relevant genes (tox genes) for the evaluation of chemical toxicants in Sprague Dawley rats in vivo and human hepatocytes in vitro,” Mutation Research, vol. 549, no. 1-2, pp. 101–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. K. M. O. Goyak, M. C. Johnson, S. C. Strom, and C. J. Omiecinski, “Expression profiling of interindividual variability following xenobiotic exposures in primary human hepatocyte cultures,” Toxicology and Applied Pharmacology, vol. 231, no. 2, pp. 216–224, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. C.-M. Loi, M. Young, E. Randinitis, A. Vassos, and J. R. Koup, “Clinical pharmacokinetics of troglitazone,” Clinical Pharmacokinetics, vol. 37, no. 2, pp. 91–104, 1999. View at Publisher · View at Google Scholar · View at Scopus