Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2010, Article ID 542359, 11 pages
http://dx.doi.org/10.1155/2010/542359
Review Article

The Role of PPAR Activation in Liver and Muscle

1Institute of Medicine, Haukeland University Hospital, University of Bergen, 5021 Bergen, Norway
2Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, 0316 Oslo, Norway

Received 1 May 2010; Accepted 12 July 2010

Academic Editor: J. Corton

Copyright © 2010 Lena Burri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Desvergne, L. Michalik, and W. Wahli, “Transcriptional regulation of metabolism,” Physiological Reviews, vol. 86, no. 2, pp. 465–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. S. A. Kliewer, B. M. Forman, B. Blumberg et al., “Differential expression and activation of a family of murine peroxisome proliferator-activated receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 15, pp. 7355–7359, 1994. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Schmidt, N. Endo, S. J. Rutledge, R. Vogel, D. Shinar, and G. A. Rodan, “Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids,” Molecular Endocrinology, vol. 6, no. 10, pp. 1634–1641, 1992. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Dreyer, G. Krey, H. Keller, F. Givel, G. Helftenbein, and W. Wahli, “Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors,” Cell, vol. 68, no. 5, pp. 879–887, 1992. View at Publisher · View at Google Scholar · View at Scopus
  5. K. L. Houseknecht, B. M. Cole, and P. J. Steele, “Peroxisome proliferator-activated receptor gamma (PPARγ) and its ligands: a review,” Domestic Animal Endocrinology, vol. 22, no. 1, pp. 1–23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Bishop-Bailey, “Peroxisome proliferator-activated receptors in the cardiovascular system,” British Journal of Pharmacology, vol. 129, no. 5, pp. 823–834, 2000. View at Google Scholar · View at Scopus
  7. P. Howroyd, C. Swanson, C. Dunn, R. C. Cattley, and J. C. Corton, “Decreased longevity and enhancement of age-dependent lesions in mice lacking the nuclear receptor peroxisome proliferator-activated receptor α (PPARα),” Toxicologic Pathology, vol. 32, no. 5, pp. 591–599, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Chinetti, J.-C. Fruchart, and B. Staels, “Peroxisome proliferator-activated receptors and inflammation: from basic science to clinical applications,” International Journal of Obesity, vol. 27, supplement 3, pp. S41–S45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Qi, Y. Zhu, and J. K. Reddy, “Peroxisome proliferator-activated receptors, coactivators, and downstream targets,” Cell Biochemistry and Biophysics, vol. 32, pp. 187–204, 2000. View at Google Scholar · View at Scopus
  10. K. Schoonjans, G. Martin, B. Staels, and J. Auwerx, “Peroxisome proliferator-activated receptors, orphans with ligands and functions,” Current Opinion in Lipidology, vol. 8, no. 3, pp. 159–166, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. N. S. Tan, L. Michalik, B. Desvergne, and W. Wahli, “Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes,” Journal of Steroid Biochemistry and Molecular Biology, vol. 93, no. 2–5, pp. 99–105, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Mandard, M. Müller, and S. Kersten, “Peroxisome proliferator-activated receptor α target genes,” Cellular and Molecular Life Sciences, vol. 61, no. 4, pp. 393–416, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Delerive, P. Gervois, J.-C. Fruchart, and B. Staels, “Induction of IκBα expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-α activators,” Journal of Biological Chemistry, vol. 275, no. 47, pp. 36703–36707, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Delerive, K. De Bosscher, W. V. Berghe, J.-C. Fruchart, G. Haegeman, and B. Staels, “DNA binding-independent induction of IκBα gene transcription by PPARα,” Molecular Endocrinology, vol. 16, no. 5, pp. 1029–1039, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Issemann and S. Green, “Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators,” Nature, vol. 347, no. 6294, pp. 645–650, 1990. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Bünger, H. M. van den Bosch, J. van der Meijde, S. Kersten, G. J. E. J. Hooiveld, and M. Müller, “Genome-wide analysis of PPARα activation in murine small intestine,” Physiological Genomics, vol. 30, no. 2, pp. 192–204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Marx, N. Mackman, U. Schönbeck et al., “PPARα activators inhibit tissue factor expression and activity in human monocytes,” Circulation, vol. 103, no. 2, pp. 213–219, 2001. View at Google Scholar · View at Scopus
  18. B. P. Neve, D. Corseaux, G. Chinetti et al., “PPARα agonists inhibit tissue factor expression in human monocytes and macrophages,” Circulation, vol. 103, no. 2, pp. 207–212, 2001. View at Google Scholar · View at Scopus
  19. D. C. Jones, X. Ding, and R. A. Daynes, “Nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is expressed in resting murine lymphocytes,” Journal of Biological Chemistry, vol. 277, no. 9, pp. 6838–6845, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. R. K. Berge, K. J. Tronstad, K. Berge et al., “The metabolic syndrome and the hepatic fatty acid drainage hypothesis,” Biochimie, vol. 87, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. S. A. Kliewer, S. S. Sundseth, S. A. Jones et al., “Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4318–4323, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. B. M. Forman, J. Chen, and R. M. Evans, “Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4312–4317, 1997. View at Publisher · View at Google Scholar · View at Scopus
  23. T. C. Leone, C. J. Weinheimer, and D. P. Kelly, “A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: the PPARα-null mouse as a model of fatty acid oxidation disorders,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7473–7478, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Kersten, J. Seydoux, J. M. Peters, F. J. Gonzalez, B. Desvergne, and W. Wahli, “Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting,” Journal of Clinical Investigation, vol. 103, no. 11, pp. 1489–1498, 1999. View at Google Scholar · View at Scopus
  25. M. Rakhshandehroo, G. Hooiveld, M. Müller, and S. Kersten, “Comparative analysis of gene regulation by the transcription factor PPARα between mouse and human,” PLoS ONE, vol. 4, no. 8, Article ID e6796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Gervois, I. P. Torra, G. Chinetti et al., “A truncated human peroxisome proliferator-activated receptor α splice variant with dominant negative activity,” Molecular Endocrinology, vol. 13, no. 9, pp. 1535–1549, 1999. View at Google Scholar · View at Scopus
  27. D. D. Patel, B. L. Knight, D. Wiggins, S. M. Humphreys, and G. F. Gibbons, “Disturbances in the normal regulation of SREBP-sensitive genes in PPARα-deficient mice,” Journal of Lipid Research, vol. 42, no. 3, pp. 328–337, 2001. View at Google Scholar · View at Scopus
  28. S. Luci, B. Giemsa, H. Kluge, and K. Eder, “Clofibrate causes an upregulation of PPAR-α target genes but does not alter expression of SREBP target genes in liver and adipose tissue of pigs,” American Journal of Physiology, vol. 293, no. 1, pp. R70–R77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C. N. A. Palmer, M.-H. Hsu, K. J. Griffin, J. L. Raucy, and E. F. Johnson, “Peroxisome proliferator activated receptor-α expression in human liver,” Molecular Pharmacology, vol. 53, no. 1, pp. 14–22, 1998. View at Google Scholar · View at Scopus
  30. J. D. Tugwood, P. R. Holden, N. H. James, R. A. Prince, and R. A. Roberts, “A peroxisome proliferator-activated receptor-alpha (PPARα) cDNA cloned from guinea-pig liver encodes a protein with similar properties to the mouse PPARα: Implications for species differences in responses to peroxisome proliferators,” Archives of Toxicology, vol. 72, no. 3, pp. 169–177, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Motojima, P. Passilly, J. M. Peters, F. J. Gonzalez, and N. Latruffe, “Expression of putative fatty acid transporter genes are regulated by peroxisome proliferator-activated receptor α and γ activators in a tissue- and inducer-specific manner,” Journal of Biological Chemistry, vol. 273, no. 27, pp. 16710–16714, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Poirier, I. Niot, M.-C. Monnot et al., “Differential involvement of peroxisome-proliferator-activated receptors α and δ in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine,” Biochemical Journal, vol. 355, no. 2, pp. 481–488, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Aoyama, J. M. Peters, N. Iritani et al., “Altered constitutive expression of fatty acid-metabolizing enzymes in mice lacking the peroxisome proliferator-activated receptor α (PPARα),” Journal of Biological Chemistry, vol. 273, no. 10, pp. 5678–5684, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. J. Gloerich, N. Van Vlies, G. A. Jansen et al., “A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARα-dependent and -independent pathways,” Journal of Lipid Research, vol. 46, no. 4, pp. 716–726, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. H. S. Paul, C. E. Gleditsch, and S. A. Adibi, “Mechanism of increased hepatic concentration of carnitine by clofibrate,” American Journal of Physiology, vol. 251, no. 3, part 1, pp. E311–E315, 1986. View at Google Scholar · View at Scopus
  36. J. D. McGarry and N. F. Brown, “The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis,” European Journal of Biochemistry, vol. 244, no. 1, pp. 1–14, 1997. View at Google Scholar · View at Scopus
  37. L. Makowski, R. C. Noland, T. R. Koves et al., “Metabolic profiling of PPARα-/- mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation,” FASEB Journal, vol. 23, no. 2, pp. 586–604, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. N. van Vlies, S. Ferdinandusse, M. Turkenburg, R. J. A. Wanders, and F. M. Vaz, “PPARα-activation results in enhanced carnitine biosynthesis and OCTN2-mediated hepatic carnitine accumulation,” Biochimica et Biophysica Acta, vol. 1767, no. 9, pp. 1134–1142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. R. Ringseis, N. Wege, G. Wen et al., “Carnitine synthesis and uptake into cells are stimulated by fasting in pigs as a model of nonproliferating species,” Journal of Nutritional Biochemistry, vol. 20, no. 11, pp. 840–847, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. J. D. Tugwood, I. Issemann, R. G. Anderson, K. R. Bundell, W. L. McPheat, and S. Green, “The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene,” EMBO Journal, vol. 11, no. 2, pp. 433–439, 1992. View at Google Scholar · View at Scopus
  41. V. Nicolas-Frances, V. K. Dasari, E. Abruzzi, T. Osumi, and N. Latruffe, “The peroxisome proliferator response element (PPRE) present at positions -681/-669 in the rat liver 3-ketoacyl-CoA thiolase B gene functionally interacts differently with PPARα and HNF-4,” Biochemical and Biophysical Research Communications, vol. 269, no. 2, pp. 347–351, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. Ü. Savas, D. E. W. Machemer, M.-H. Hsu et al., “Opposing roles of peroxisome proliferator-activated receptor α and growth hormone in the regulation of CYP4A11 expression in a transgenic mouse model,” Journal of Biological Chemistry, vol. 284, no. 24, pp. 16541–16552, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Sérée, P.-H. Villard, J.-M. Pascussi et al., “Evidence for a new human CYP1A1 regulation pathway involving PPAR-α and 2 PPRE sites,” Gastroenterology, vol. 127, no. 5, pp. 1436–1445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Yu, S. Rao, and J. K. Reddy, “Peroxisome proliferator-activated receptors, fatty acid oxidation, steatohepatitis and hepatocarcinogenesis,” Current Molecular Medicine, vol. 3, no. 6, pp. 561–572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. H. Castelein, T. Gulick, P. E. Declercq, G. P. Mannaerts, D. D. Moore, and M. I. Baes, “The peroxisome proliferator activated receptor regulates malic enzyme gene expression,” Journal of Biological Chemistry, vol. 269, no. 43, pp. 26754–26758, 1994. View at Google Scholar · View at Scopus
  46. H. Guillou, P. Martin, S. Jan et al., “Comparative effect of fenofibrate on hepatic desaturases in wild-type and peroxisome proliferator-activated receptor α-deficient mice,” Lipids, vol. 37, no. 10, pp. 981–989, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. C. W. Miller and J. M. Ntambi, “Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 18, pp. 9443–9448, 1996. View at Publisher · View at Google Scholar · View at Scopus
  48. C. Tang, H. P. Cho, M. T. Nakamura, and S. D. Clarke, “Regulation of human Δ-6 desaturase gene transcription: identification of a functional direct repeat-1 element,” Journal of Lipid Research, vol. 44, no. 4, pp. 686–695, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. G. F. Watts, P. H. R. Barrett, J. Ji et al., “Differential regulation of lipoprotein kinetics by atorvastatin and fenofibrate in subjects with the metabolic syndrome,” Diabetes, vol. 52, no. 3, pp. 803–811, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Vu-Dac, K. Schoonjans, V. Kosykh et al., “Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor,” Journal of Clinical Investigation, vol. 96, no. 2, pp. 741–750, 1995. View at Google Scholar · View at Scopus
  51. N. Vu-Dac, S. Chopin-Delannoy, P. Gervois et al., “The nuclear receptors peroxisome proliferator-activated receptor α and rev-erbα mediate the species-specific regulation of apolipoprotein A-I expression by fibrates,” Journal of Biological Chemistry, vol. 273, no. 40, pp. 25713–25720, 1998. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Eriksson, L. A. Carlson, T. A. Miettinen, and B. Angelin, “Stimulation of fecal steroid excretion after infusion of recombinant proapolipoprotein A-I: potential reverse cholesterol transport in humans,” Circulation, vol. 100, no. 6, pp. 594–598, 1999. View at Google Scholar · View at Scopus
  53. K. Schoonjans, J. Peinado-Onsurbe, A.-M. Lefebvre et al., “PPARα and PPARγ activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene,” EMBO Journal, vol. 15, no. 19, pp. 5336–5348, 1996. View at Google Scholar · View at Scopus
  54. X. Prieur, P. Lesnik, M. Moreau et al., “Differential regulation of the human versus the mouse apolipoprotein AV gene by PPARalpha. Implications for the study of pharmaceutical modifiers of hypertriglyceridemia in mice,” Biochimica et Biophysica Acta, vol. 1791, no. 8, pp. 764–771, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. N. Vu-Dac, P. Gervois, H. Jakel et al., “Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor α activators,” Journal of Biological Chemistry, vol. 278, no. 20, pp. 17982–17985, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. A. E. Schultze, W. E. Alborn, R. K. Newton, and R. J. Konrad, “Administration of a PPARα agonist increases serum apolipoprotein A-V levels and the apolipoprotein A-V/apolipoprotein C-III ratio,” Journal of Lipid Research, vol. 46, no. 8, pp. 1591–1595, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Staels, N. Vu-Dac, V. A. Kosykh et al., “Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates,” Journal of Clinical Investigation, vol. 95, no. 2, pp. 705–712, 1995. View at Google Scholar · View at Scopus
  58. R. S. Birjmohun, B. A. Hutten, J. J. P. Kastelein, and E. S. G. Stroes, “Efficacy and safety of high-density lipoprotein cholesterol-increasing compounds: a meta-analysis of randomized controlled trials,” Journal of the American College of Cardiology, vol. 45, no. 2, pp. 185–197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. D. W. Russell and K. D. R. Setchell, “Bile acid biosynthesis,” Biochemistry, vol. 31, no. 20, pp. 4737–4749, 1992. View at Google Scholar · View at Scopus
  60. Z. R. Vlahcevic, D. M. Heuman, and P. B. Hylemon, “Regulation of bile acid synthesis,” Hepatology, vol. 13, no. 3, pp. 590–600, 1991. View at Publisher · View at Google Scholar · View at Scopus
  61. S. K. Cheema and L. B. Agellon, “The murine and human cholesterol 7α-hydroxylase gene promoters are differentially responsive to regulation by fatty acids mediated via peroxisome proliferator-activated receptor α,” Journal of Biological Chemistry, vol. 275, no. 17, pp. 12530–12536, 2000. View at Publisher · View at Google Scholar · View at Scopus
  62. M. C. Hunt, Y.-Z. Yang, G. Eggertsen et al., “The peroxisome proliferator-activated receptor α (PPARα) regulates bile acid biosynthesis,” Journal of Biological Chemistry, vol. 275, no. 37, pp. 28947–28953, 2000. View at Google Scholar · View at Scopus
  63. J. Y. L. Chiang, “Bile acid regulation of gene expression: roles of nuclear hormone receptors,” Endocrine Reviews, vol. 23, no. 4, pp. 443–463, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Marrapodi and J. Y.L. Chiang, “Peroxisome proliferator-activated receptor α (PPARα) and agonist inhibit cholesterol 7α-hydroxylase gene (CYP7A1) transcription,” Journal of Lipid Research, vol. 41, no. 4, pp. 514–520, 2000. View at Google Scholar · View at Scopus
  65. D. D. Patel, B. L. Knight, A. K. Soutar, G. F. Gibbons, and D. P. Wade, “The effect of peroxisome-proliferator-activated receptor-α on the activity of the cholesterol 7α-hydroxylase gene,” Biochemical Journal, vol. 351, no. 3, pp. 747–753, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. S. M. Post, H. Duez, P. P. Gervois, B. Staels, F. Kuipers, and H. M. G. Princen, “Fibrates suppress bile acid synthesis via peroxisome proliferator-activated receptor-α-mediated downregulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase expression,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 11, pp. 1840–1845, 2001. View at Google Scholar · View at Scopus
  67. D. Ståhlberg, E. Reihnér, M. Rudling, L. Berglund, K. Einarsson, and B. O. Angelin, “Influence of bezafibrate on hepatic cholesterol metabolism in gallstone patients: reduced activity of cholesterol 7α-hydroxylase,” Hepatology, vol. 21, no. 4, pp. 1025–1030, 1995. View at Publisher · View at Google Scholar · View at Scopus
  68. H. Ishida, Y. Kuruta, O. Gotoh, C. Yamashita, Y. Yoshida, and M. Noshiro, “Structure, evolution, and liver-specific expression of sterol 12α-hydroxylase P450 (CYP8B),” Journal of Biochemistry, vol. 126, no. 1, pp. 19–25, 1999. View at Google Scholar · View at Scopus
  69. M.-H. Hsu, Ü. Savas, K. J. Griffin, and E. F. Johnson, “Identification of peroxisome proliferator-responsive human genes by elevated expression of the peroxisome proliferator-activated receptor α in HepG2 cells,” Journal of Biological Chemistry, vol. 276, no. 30, pp. 27950–27958, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. J. C. Rodríguez, G. Gil-Gómez, F. G. Hegardt, and D. Haro, “Peroxisome proliferator-activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids,” Journal of Biological Chemistry, vol. 269, no. 29, pp. 18767–18772, 1994. View at Google Scholar · View at Scopus
  71. M. K. Badman, P. Pissios, A. R. Kennedy, G. Koukos, J. S. Flier, and E. Maratos-Flier, “Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states,” Cell Metabolism, vol. 5, no. 6, pp. 426–437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. T. Coskun, H. A. Bina, M. A. Schneider et al., “Fibroblast growth factor 21 corrects obesity in mice,” Endocrinology, vol. 149, no. 12, pp. 6018–6027, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Xu, D. J. Lloyd, C. Hale et al., “Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice,” Diabetes, vol. 58, no. 1, pp. 250–259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Inagaki, P. Dutchak, G. Zhao et al., “Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21,” Cell Metabolism, vol. 5, no. 6, pp. 415–425, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Lundåsen, M. C. Hunt, L.-M. Nilsson et al., “PPARα is a key regulator of hepatic FGF21,” Biochemical and Biophysical Research Communications, vol. 360, no. 2, pp. 437–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. A. Kharitonenkov, T. L. Shiyanova, A. Koester et al., “FGF-21 as a novel metabolic regulator,” Journal of Clinical Investigation, vol. 115, no. 6, pp. 1627–1635, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Xu, G. Xiao, C. Tirujillo et al., “Peroxisome proliferator-activated receptor α (PPARα) influences: substrate utilization for hepatic glucose production,” Journal of Biological Chemistry, vol. 277, no. 52, pp. 50237–50244, 2002. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Patsouris, S. Mandard, P. J. Voshol et al., “PPARα governs glycerol metabolism,” Journal of Clinical Investigation, vol. 114, no. 1, pp. 94–103, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. R. H. J. Bandsma, T. H. van Dijk, A. ter Harmsel et al., “Hepatic de novo synthesis of glucose 6-phosphate is not affected in peroxisome proliferator-activated receptor α-deficient mice but is preferentially directed toward hepatic glycogen stores after a short term fast,” Journal of Biological Chemistry, vol. 279, no. 10, pp. 8930–8937, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. R. Genolet, S. Kersten, O. Braissant et al., “Promoter rearrangements cause species-specific hepatic regulation of the glyoxylate reductase/hydroxypyruvate reductase gene by the peroxisome proliferator-activated receptor α,” Journal of Biological Chemistry, vol. 280, no. 25, pp. 24143–24152, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Kersten, S. Mandard, P. Escher et al., “The peroxisome proliferator-activated receptor α regulates amino acid metabolism,” FASEB Journal, vol. 15, no. 11, pp. 1971–1978, 2001. View at Publisher · View at Google Scholar · View at Scopus
  82. K. Sheikh, G. Camejo, B. Lanne, T. Halvarsson, M. R. Landergren, and N. D. Oakes, “Beyond lipids, pharmacological PPARα activation has important effects on amino acid metabolism as studied in the rat,” American Journal of Physiology, vol. 292, no. 4, pp. E1157–E1165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. J. Dierkes, S. Westphal, J. Martens-Lobenhoffer, C. Luley, and S. M. Bode-Böger, “Fenofibrate increases the L-arginine: ADMA ratio by increase of L-arginine concentration but has no effect on ADMA concentration,” Atherosclerosis, vol. 173, no. 2, pp. 239–244, 2004. View at Publisher · View at Google Scholar · View at Scopus
  84. R. Kobayashi, T. Murakami, M. Obayashi et al., “Clofibric acid stimulates branched-chain amino acid catabolism by three mechanisms,” Archives of Biochemistry and Biophysics, vol. 407, no. 2, pp. 231–240, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. P. Gervois, R. Kleemann, A. Pilon et al., “Global suppression of IL-6-induced acute phase response gene expression after chronic in vivo treatment with the peroxisome proliferator-activated receptor-α activator fenofibrate,” Journal of Biological Chemistry, vol. 279, no. 16, pp. 16154–16160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. R. Belfort, R. Berria, J. Cornell, and K. Cusi, “Fenofibrate reduces systemic inflammation markers independent of its effects on lipid and glucose metabolism in patients with the metabolic syndrome,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 2, pp. 829–836, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. M.-W. Lee, D. Chanda, J. Yang et al., “Regulation of hepatic gluconeogenesis by an ER-bound transcription factor, CREBH,” Cell Metabolism, vol. 11, no. 4, pp. 331–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. K. Zhang, X. Shen, J. Wu et al., “Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response,” Cell, vol. 124, no. 3, pp. 587–599, 2006. View at Publisher · View at Google Scholar · View at Scopus
  89. C. Yu, F. Wang, C. Jin, X. Wu, W.-K. Chan, and W. L. McKeehan, “Increased carbon tetrachloride-induced liver injury and fibrosis in FGFR4-deficient mice,” American Journal of Pathology, vol. 161, no. 6, pp. 2003–2010, 2002. View at Google Scholar · View at Scopus
  90. K. S. Echtay, D. Roussel, J. St-Plerre et al., “Superoxide activates mitochondrial uncoupling proteins,” Nature, vol. 415, no. 6867, pp. 96–99, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. Q. Wu, D. Gong, N. Tian et al., “Protection of regenerating liver after partial hepatectomy from carbon tetrachloride hepatotoxicity in rats: roles of mitochondrial uncoupling protein 2 and ATP stores,” Digestive Diseases and Sciences, vol. 54, no. 9, pp. 1918–1925, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. S. P. Anderson, P. Howroyd, J. Liu et al., “The transcriptional response to a peroxisome proliferator-activated receptor α agonist includes increased expression of proteome maintenance genes,” Journal of Biological Chemistry, vol. 279, no. 50, pp. 52390–52398, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. J. Ashby, A. Brady, C. R. Elcombe et al., “Mechanistically-based human hazard assessment of peroxisome proliferator-induced hepatocarcinogenesis,” Human and Experimental Toxicology, vol. 13, supplement 2, pp. S1–S117, 1994. View at Google Scholar · View at Scopus
  94. P. Bentley, I. Calder, C. Elcombe, P. Grasso, D. Stringer, and H.-J. Wiegand, “Hepatic peroxisome proliferation in rodents and its significance for humans,” Food and Chemical Toxicology, vol. 31, no. 11, pp. 857–907, 1993. View at Publisher · View at Google Scholar · View at Scopus
  95. T. Hays, I. Rusyn, A. M. Burns et al., “Role of peroxisome proliferator-activated receptor-α (PPARα) in bezafibrate-induced hepatocarcinogenesis and cholestasis,” Carcinogenesis, vol. 26, no. 1, pp. 219–227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  96. J. M. Peters, C. Cheung, and F. J. Gonzalez, “Peroxisome proliferator-activated receptor-α and liver cancer: where do we stand?” Journal of Molecular Medicine, vol. 83, no. 10, pp. 774–785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. M. S. Rao and J. K. Reddy, “An overview of peroxisome proliferator-induced hepatocarcinogenesis,” Environmental Health Perspectives, vol. 93, pp. 205–209, 1991. View at Google Scholar · View at Scopus
  98. J. K. Reddy and M. S. Rao, “Malignant tumors in rats fed nafenopin, a hepatic peroxisome proliferator,” Journal of the National Cancer Institute, vol. 59, no. 6, pp. 1645–1650, 1977. View at Google Scholar · View at Scopus
  99. A. C. Bayly, R. A. Roberts, and C. Dive, “Suppression of liver cell apoptosis in vitro by the non-genotoxic hepatocarcinogen and peroxisome proliferator nafenopin,” Journal of Cell Biology, vol. 125, no. 1, pp. 197–203, 1994. View at Google Scholar · View at Scopus
  100. M. L. Cunningham, M. S. Soliman, M. Z. Badr, and H. B. Matthews, “Rotenone, an anticarcinogen, inhibits cellular proliferation but not peroxisome proliferation in mouse liver,” Cancer Letters, vol. 95, no. 1-2, pp. 93–97, 1995. View at Publisher · View at Google Scholar · View at Scopus
  101. N. H. James, A. R. Soames, and R. A. Roberts, “Suppression of hepatocyte apoptosis and induction of DNA synthesis by the rat and mouse hepatocarcinogen diethylhexylphlathate (DEHP) and the mouse hepatocarcinogen 1,4-dichlorobenzene (DCB),” Archives of Toxicology, vol. 72, no. 12, pp. 784–790, 1998. View at Publisher · View at Google Scholar · View at Scopus
  102. F. A. Oberhammer and H.-M. Qin, “Effect of three tumour promoters on the stability of hepatocyte cultures and apoptosis after transforming growth factor-β1,” Carcinogenesis, vol. 16, no. 6, pp. 1363–1371, 1995. View at Google Scholar
  103. J. K. Reddy and M. S. Rao, “Oxidative DNA damage caused by persistent peroxisome proliferation: its role in hepatocarcinogenesis,” Mutation Research, vol. 214, no. 1, pp. 63–68, 1989. View at Google Scholar · View at Scopus
  104. Y. M. Shah, K. Morimura, Q. Yang, T. Tanabe, M. Takagi, and F. J. Gonzalez, “Peroxisome proliferator-activated receptor α regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation,” Molecular and Cellular Biology, vol. 27, no. 12, pp. 4238–4247, 2007. View at Publisher · View at Google Scholar · View at Scopus
  105. J. Brennecke, A. Stark, R. B. Russell, and S. M. Cohen, “Principles of microRNA-target recognition,” PLoS Biology, vol. 3, no. 3, article e85, 2005. View at Google Scholar · View at Scopus
  106. B. P. Lewis, C. B. Burge, and D. P. Bartel, “Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets,” Cell, vol. 120, no. 1, pp. 15–20, 2005. View at Publisher · View at Google Scholar · View at Scopus
  107. J. A. Balfour, D. McTavish, and R. C. Heel, “Fenofibrate. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use in dyslipidaemia,” Drugs, vol. 40, no. 2, pp. 260–290, 1990. View at Google Scholar · View at Scopus
  108. J. E. Klaunig, M. A. Babich, K. P. Baetcke et al., “PPARα agonist-induced rodent tumors: modes of action and human relevance,” Critical Reviews in Toxicology, vol. 33, no. 6, pp. 655–780, 2003. View at Google Scholar · View at Scopus
  109. R. Bottinelli and C. Reggiani, “Human skeletal muscle fibres: molecular and functional diversity,” Progress in Biophysics and Molecular Biology, vol. 73, no. 2–4, pp. 195–262, 2000. View at Publisher · View at Google Scholar · View at Scopus
  110. D. M. Muoio, J. M. Way, C. J. Tanner et al., “Peroxisome proliferator-activated receptor-α regulates fatty acid utilization in primary human skeletal muscle cells,” Diabetes, vol. 51, no. 4, pp. 901–909, 2002. View at Google Scholar · View at Scopus
  111. E. T. Kase, B. Andersen, H. I. Nebb, A. C. Rustan, and G. Hege Thoresen, “22-Hydroxycholesterols regulate lipid metabolism differently than T0901317 in human myotubes,” Biochimica et Biophysica Acta, vol. 1761, no. 12, pp. 1515–1522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. A. P. Russell, J. Feilchenfeldt, S. Schreiber et al., “Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle,” Diabetes, vol. 52, no. 12, pp. 2874–2881, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. D. K. Krämer, M. Ahlsén, J. Norrbom et al., “Human skeletal muscle fibre type variations correlate with PPARα, PPARδ and PGC-1α mRNA,” Acta Physiologica, vol. 188, no. 3-4, pp. 207–216, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. J. F. Horowitz, T. C. Leone, W. Feng, D. P. Kelly, and S. Klein, “Effect of endurance training on lipid metabolism in women: a potential role for PPARα in the metabolic response to training,” American Journal of Physiology, vol. 279, no. 2, pp. E348–E355, 2000. View at Google Scholar · View at Scopus
  115. A. T. De Souza, P. D. Cornwell, X. Dai, M. J. Caguyong, and R. G. Ulrich, “Agonists of the peroxisome proliferator-activated receptor alpha induce a fiber-type-selective transcriptional response in rat skeletal muscle,” Toxicological Sciences, vol. 92, no. 2, pp. 578–586, 2006. View at Publisher · View at Google Scholar · View at Scopus
  116. K. Kannisto, A. Chibalin, B. Glinghammar, J. R. Zierath, A. Hamsten, and E. Ehrenborg, “Differential expression of peroxisomal proliferator activated receptors alpha and delta in skeletal muscle in response to changes in diet and exercise,” International Journal of Molecular Medicine, vol. 17, no. 1, pp. 45–52, 2006. View at Google Scholar · View at Scopus
  117. F. Djouadi, F. Aubey, D. Schlemmer, and J. Bastin, “Peroxisome proliferator activated receptor δ (PPARδ) agonist but not PPARα corrects carnitine palmitoyl transferase 2 deficiency in human muscle cells,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 3, pp. 1791–1797, 2005. View at Publisher · View at Google Scholar · View at Scopus
  118. K. Løvås, T. H. Røst, J. Skorve et al., “Tetradecylthioacetic acid attenuates dyslipidaemia in male patients with type 2 diabetes mellitus, possibly by dual PPAR-α/δ activation and increased mitochondrial fatty acid oxidation,” Diabetes, Obesity and Metabolism, vol. 11, no. 4, pp. 304–314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  119. E. L. Abbot, J. G. McCormack, C. Reynet, D. G. Hassall, K. W. Buchan, and S. J. Yeaman, “Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells,” FEBS Journal, vol. 272, no. 12, pp. 3004–3014, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. H. Pilegaard and P. D. Neufer, “Transcriptional regulation of pyruvate dehydrogenase kinase 4 in skeletal muscle during and after exercise,” Proceedings of the Nutrition Society, vol. 63, no. 2, pp. 221–226, 2004. View at Publisher · View at Google Scholar · View at Scopus
  121. M. C. Sugden and M. J. Holness, “Mechanisms underlying regulation of the expression and activities of the mammalian pyruvate dehydrogenase kinases,” Archives of Physiology and Biochemistry, vol. 112, no. 3, pp. 139–149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. P. Wu, K. Inskeep, M. M. Bowker-Kinley, K. M. Popov, and R. A. Harris, “Mechanism responsible for inactivation of skeletal muscle pyruvate dehydrogenase complex in starvation and diabetes,” Diabetes, vol. 48, no. 8, pp. 1593–1599, 1999. View at Publisher · View at Google Scholar · View at Scopus
  123. A. Minnich, N. Tian, L. Byan, and G. Bilder, “A potent PPARα agonist stimulates mitochondrial fatty acid β-oxidation in liver and skeletal muscle,” American Journal of Physiology, vol. 280, no. 2, pp. E270–E279, 2001. View at Google Scholar · View at Scopus
  124. B. N. Finck, C. Bernal-Mizrachi, D. H. Han et al., “A potential link between muscle peroxisome proliferator-activated receptor-α signaling and obesity-related diabetes,” Cell Metabolism, vol. 1, no. 2, pp. 133–144, 2005. View at Publisher · View at Google Scholar · View at Scopus
  125. D. M. Muoio, P. S. MacLean, D. B. Lang et al., “Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out mice. Evidence for compensatory regulation by PPARδ,” Journal of Biological Chemistry, vol. 277, no. 29, pp. 26089–26097, 2002. View at Publisher · View at Google Scholar · View at Scopus
  126. C. Hodel, “Myopathy and rhabdomyolysis with lipid-lowering drugs,” Toxicology Letters, vol. 128, no. 1–3, pp. 159–168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  127. G. J. Magarian, L. M. Lucas, and C. Colley, “Gemfibrozil-induced myopathy,” Archives of Internal Medicine, vol. 151, no. 9, pp. 1873–1874, 1991. View at Publisher · View at Google Scholar · View at Scopus
  128. T. Langer and R. I. Levy, “Acute muscular syndrome associated with administration of clofibrate,” The New England Journal of Medicine, vol. 279, no. 16, pp. 856–858, 1968. View at Google Scholar · View at Scopus
  129. P. Rush, M. Baron, and M. Kapusta, “Clofibrate myopathy: a case report and a review of the literature,” Seminars in Arthritis and Rheumatism, vol. 15, no. 3, pp. 226–229, 1986. View at Google Scholar · View at Scopus
  130. B. Faiola, J. G. Falls, R. A. Peterson et al., “PPAR alpha, more than PPAR delta, mediates the hepatic and skeletal muscle alterations induced by the PPAR agonist GW0742,” Toxicological Sciences, vol. 105, no. 2, pp. 384–394, 2008. View at Publisher · View at Google Scholar · View at Scopus
  131. J. Aragonés, M. Schneider, K. Van Geyte et al., “Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism,” Nature Genetics, vol. 40, no. 2, pp. 170–180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. E. Ehrenborg and A. Krook, “Regulation of skeletal muscle physiology and metabolism by peroxisome proliferator-activated receptor δ,” Pharmacological Reviews, vol. 61, no. 3, pp. 373–393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. U. Dressel, T. L. Allen, J. B. Pippal, P. R. Rohde, P. Lau, and G. E. O. Muscat, “The peroxisome proliferator-activated receptor beta/delta agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells,” Molecular Endocrinology, vol. 17, no. 12, pp. 2477–2493, 2003. View at Publisher · View at Google Scholar · View at Scopus
  134. D. Holst, S. Luquet, V. Nogueira, K. Kristiansen, X. Leverve, and P. A. Grimaldi, “Nutritional regulation and role of peroxisome proliferator-activated receptor δ in fatty acid catabolism in skeletal muscle,” Biochimica et Biophysica Acta, vol. 1633, no. 1, pp. 43–50, 2003. View at Publisher · View at Google Scholar · View at Scopus
  135. T. Tanaka, J. Yamamoto, S. Iwasaki et al., “Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15924–15929, 2003. View at Publisher · View at Google Scholar · View at Scopus
  136. D. K. Krämer, L. Al-Khalili, B. Guigas, Y. Leng, P. M. Garcia-Roves, and A. Krook, “Role of AMP kinase and PPARδ in the regulation of lipid and glucose metabolism in human skeletal muscle,” Journal of Biological Chemistry, vol. 282, no. 27, pp. 19313–19320, 2007. View at Publisher · View at Google Scholar · View at Scopus
  137. D. K. Krämer, L. Al-Khalili, S. Perrini et al., “Direct activation of glucose transport in primary human myotubes after activation of peroxisome proliferator-activated receptor δ,” Diabetes, vol. 54, no. 4, pp. 1157–1163, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. T. Coll, D. Álvarez-Guardia, E. Barroso et al., “Activation of peroxisome proliferator-activated receptor-δ by GW501516 prevents fatty acid-induced nuclear factor-κB activation and insulin resistance in skeletal muscle cells,” Endocrinology, vol. 151, no. 4, pp. 1560–1569, 2010. View at Publisher · View at Google Scholar · View at Scopus
  139. H. B. Rubins, S. J. Robins, D. Collins et al., “Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs High-density Lipoprotein Intervention Trial (VA-HIT),” Archives of Internal Medicine, vol. 162, no. 22, pp. 2597–2604, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. G. Ruotolo, C.-G. Ericsson, C. Tettamanti et al., “Treatment effects on serum lipoprotein lipids, apolipoproteins and low density lipoprotein particle size and relationships of lipoprotein variables to progression of coronary artery disease in the Bezafibrate Coronary Atherosclerosis Intervention Trial (BECAIT),” Journal of the American College of Cardiology, vol. 32, no. 6, pp. 1648–1656, 1998. View at Publisher · View at Google Scholar · View at Scopus
  141. C. Baigent, A. Keech, P. M. Kearney et al., “Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins,” The Lancet, vol. 366, no. 9493, pp. 1267–1278, 2005. View at Google Scholar
  142. H. N. Ginsberg, M. B. Elam, L. C. Lovato et al., “Effects of combination lipid therapy in type 2 diabetes mellitus,” The New England Journal of Medicine, vol. 362, no. 17, pp. 1563–1574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. N. Leuenberger, S. Pradervand, and W. Wahli, “Sumoylated PPARα mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice,” Journal of Clinical Investigation, vol. 119, no. 10, pp. 3138–3148, 2009. View at Publisher · View at Google Scholar · View at Scopus
  144. X. Wang and M. W. Kilgore, “Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cells,” Molecular and Cellular Endocrinology, vol. 194, no. 1-2, pp. 123–133, 2002. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Yoon, “The role of PPARα in lipid metabolism and obesity: focusing on the effects of estrogen on PPARα actions,” Pharmacological Research, vol. 60, no. 3, pp. 151–159, 2009. View at Publisher · View at Google Scholar · View at Scopus