Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2010, Article ID 954639, 4 pages
http://dx.doi.org/10.1155/2010/954639
Editorial

PPARs and Xenobiotic-Induced Adverse Effects: Relevance to Human Health

1Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
2Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
3National Toxicology Program, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA

Received 31 December 2010; Accepted 31 December 2010

Copyright © 2010 Christopher Lau et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. N. Feige, L. Gelman, L. Michalik, B. Desvergne, and W. Wahli, “From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions,” Progress in Lipid Research, vol. 45, no. 2, pp. 120–159, 2006. View at Publisher · View at Google Scholar · View at PubMed
  2. J. N. Feige, A. Gerber, C. Casals-Casas et al., “The pollutant diethylhexyl phthalate regulates hepatic energy metabolism via species-specific PPARα-dependent mechanisms,” Environmental Health Perspectives, vol. 118, no. 2, pp. 234–241, 2010. View at Publisher · View at Google Scholar · View at PubMed
  3. J. Boberg, S. Metzdorff, R. Wortziger et al., “Impact of diisobutyl phthalate and other PPAR agonists on steroidogenesis and plasma insulin and leptin levels in fetal rats,” Toxicology, vol. 250, no. 2-3, pp. 75–81, 2008. View at Publisher · View at Google Scholar · View at PubMed
  4. J. C. Corton, “Evaluation of the role of peroxisome proliferator-activated receptor α (PPARα) in mouse liver tumor induction by trichloroethylene and metabolites,” Critical Reviews in Toxicology, vol. 38, no. 10, pp. 857–875, 2008. View at Publisher · View at Google Scholar · View at PubMed
  5. J. Kwintkiewicz, Y. Nishi, T. Yanase, and L. C. Giudice, “Peroxisome proliferator-activated receptor-γ mediates bisphenol A inhibition of FSH-stimulated IGF-1, aromatase, and estradiol in human granulosa cells,” Environmental Health Perspectives, vol. 118, no. 3, pp. 400–406, 2010. View at Publisher · View at Google Scholar · View at PubMed
  6. C. J. Wolf, M. L. Takacs, J. E. Schmid, C. Lau, and B. D. Abbott, “Activation of mouse and human peroxisome proliferator-activated receptor alpha by perfluoroalkyl acids of different functional groups and chain lengths,” Toxicological Sciences, vol. 106, no. 1, pp. 162–171, 2008. View at Publisher · View at Google Scholar · View at PubMed
  7. Y. Hiromori, J. Nishikawa, I. Yoshida, H. Nagase, and T. Nakanishi, “Structure-dependent activation of peroxisome proliferator-activated receptor (PPAR) γ by organotin compounds,” Chemico-Biological Interactions, vol. 180, no. 2, pp. 238–244, 2009. View at Publisher · View at Google Scholar · View at PubMed
  8. S. Kirchner, T. Kieu, C. Chow, S. Casey, and B. Blumberg, “Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes,” Molecular Endocrinology, vol. 24, no. 3, pp. 526–539, 2010. View at Publisher · View at Google Scholar · View at PubMed
  9. S. Takeuchi, T. Matsuda, S. Kobayashi, T. Takahashi, and H. Kojima, “In vitro screening of 200 pesticides for agonistic activity via mouse peroxisome proliferator-activated receptor (PPAR)α and PPARγ and quantitative analysis of in vivo induction pathway,” Toxicology and Applied Pharmacology, vol. 217, no. 3, pp. 235–244, 2006. View at Publisher · View at Google Scholar · View at PubMed
  10. M. P. Cajaraville, I. Cancio, A. Ibabe, and A. Orbea, “Peroxisome proliferation as a biomarker in environmental pollution assessment,” Microscopy Research and Technique, vol. 61, no. 2, pp. 191–202, 2003. View at Publisher · View at Google Scholar · View at PubMed
  11. B. D. Abbott, C. J. Wolf, J. E. Schmid et al., “Perfluorooctanoic acid-induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator-activated receptor-alpha,” Toxicological Sciences, vol. 98, no. 2, pp. 571–581, 2007. View at Publisher · View at Google Scholar · View at PubMed
  12. B. D. Abbott, C. J. Wolf, K. P. Das et al., “Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPARα) in the mouse,” Reproductive Toxicology, vol. 27, no. 3-4, pp. 258–265, 2009. View at Publisher · View at Google Scholar · View at PubMed