Table of Contents Author Guidelines Submit a Manuscript
PPAR Research
Volume 2014, Article ID 537865, 11 pages
http://dx.doi.org/10.1155/2014/537865
Research Article

PPARG in Human Adipogenesis: Differential Contribution of Canonical Transcripts and Dominant Negative Isoforms

1Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council, 80131 Naples, Italy
2Department of Translational Medical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
3Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy

Received 25 November 2013; Revised 3 February 2014; Accepted 5 February 2014; Published 23 March 2014

Academic Editor: Guangrui Yang

Copyright © 2014 M. Aprile et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. M. Willson, P. J. Brown, D. D. Sternbach, and B. R. Henke, “The PPARs: from orphan receptors to drug discovery,” Journal of Medicinal Chemistry, vol. 43, no. 4, pp. 527–550, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. M. C. Cho, K. Lee, S. G. Paik, and D. Y. Yoon, “Peroxisome proliferators-activated receptor (PPAR) modulators and metabolic disorders,” PPAR Research, vol. 2008, Article ID 679137, 14 pages, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. V. Costa, M. A. Gallo, F. Letizia, M. Aprile, A. Casamassimi, and A. Ciccodicola, “PPARG: gene expression regulation and next-generation sequencing for unsolved issues,” PPAR Research, vol. 2010, Article ID 409168, 17 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. E. D. Rosen and B. M. Spiegelman, “PPARγ: a nuclear regulator of metabolism, differentiation, and cell growth,” Journal of Biological Chemistry, vol. 276, no. 41, pp. 37731–37734, 2001. View at Google Scholar · View at Scopus
  5. W. Ahmed, O. Ziouzenkova, J. Brown et al., “PPARs and their metabolic modulation: new mechanisms for transcriptional regulation?” Journal of Internal Medicine, vol. 262, no. 2, pp. 184–198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Széles, D. Töröcsik, and L. Nagy, “PPARγ in immunity and inflammation: cell types and diseases,” Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids, vol. 1771, no. 8, pp. 1014–1030, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Ahmadian, J. M. Suh, N. Hah et al., “PPARγ signaling and metabolism: the good, the bad and the future,” Nature Medicine, vol. 19, no. 5, pp. 557–566, 2013. View at Google Scholar
  8. Y. Barak, M. C. Nelson, E. S. Ong et al., “PPARγ is required for placental, cardiac, and adipose tissue development,” Molecular Cell, vol. 4, no. 4, pp. 585–595, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. E. D. Rosen, P. Sarraf, A. E. Troy et al., “PPARγ is required for the differentiation of adipose tissue in vivo and in vitro,” Molecular Cell, vol. 4, no. 4, pp. 611–617, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. L. Muller, C. Bogardus, B. A. Beamer, A. R. Shuldiner, and L. J. Baier, “A functional variant in the peroxisome proliferator—activated receptor γ2 promoter is associated with predictors of obesity and type 2 diabetes in Pima Indians,” Diabetes, vol. 52, no. 7, pp. 1864–1871, 2003. View at Google Scholar · View at Scopus
  11. D. Altshuler, J. N. Hirschhorn, M. Klannemark et al., “The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes,” Nature Genetics, vol. 26, no. 1, pp. 76–80, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Mori, H. Ikegami, Y. Kawaguchi et al., “The Pro12→Ala substitution in PPAR-γ is associated with resistance to development of diabetes in the general population: possible involvement in impairment of insulin secretion in individuals with type 2 diabetes,” Diabetes, vol. 50, no. 4, pp. 891–894, 2001. View at Google Scholar · View at Scopus
  13. V. Costa, A. Casamassimi, K. Esposito et al., “Characterization of a novel polymorphism in PPARG regulatory region associated with type 2 diabetes and diabetic retinopathy in italy,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 126917, 7 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. J. I. Odegaard, R. R. Ricardo-Gonzalez, M. H. Goforth et al., “Macrophage-specific PPARγ controls alternative activation and improves insulin resistance,” Nature, vol. 447, no. 7148, pp. 1116–1120, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Azhar, “Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease,” Future Cardiology, vol. 6, no. 5, pp. 657–691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Barroso, M. Gurnell, V. E. F. Crowley et al., “Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension,” Nature, vol. 402, no. 6764, pp. 880–883, 1999. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Capaccio, A. Ciccodicola, L. Sabatino et al., “A novel germline mutation in peroxisome proliferator-Activated Receptor γ gene associated with large intestine polyp formation and dyslipidemia,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1802, no. 6, pp. 572–581, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Raji and J. Plutzky, “Insulin resistance, diabetes, and atherosclerosis: thiazolidinediones as therapeutic interventions,” Current Cardiology Reports, vol. 4, no. 6, pp. 514–521, 2002. View at Google Scholar · View at Scopus
  19. M. C. Bragt and H. E. Popeijus, “Peroxisome proliferator-activated receptors and the metabolic syndrome,” Physiology and Behavior, vol. 94, no. 2, pp. 187–197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Shahbazian, S. M. Latifi, M. T. Jalali et al., “Metabolic syndrome and its correlated factors in an urban population in South West of Iran.,” Journal of Diabetes & Metabolic Disorders, vol. 12, no. 1, p. 11, 2013. View at Google Scholar
  21. L. Fajas, D. Auboeuf, E. Raspé et al., “The organization, promoter analysis, and expression of the human PPARγ gene,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 18779–18789, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Fajas, J. C. Fruchart, and J. Auwerx, “PPARγ3 mRNA: a distinct PPARγ mRNA subtype transcribed from an independent promoter,” FEBS Letters, vol. 438, no. 1-2, pp. 55–60, 1998. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Knouff and J. Auwerx, “Peroxisome proliferator-activated receptor-γ calls for activation in moderation: lessons from genetics and pharmacology,” Endocrine Reviews, vol. 25, no. 6, pp. 899–918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Werman, A. Hollenberg, G. Solanes, C. Bjørbæk, A. J. Vidal-Puig, and J. S. Flier, “Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor γ (PPARγ). Differential activity of PPARγ1 and -2 isoforms and influence of insulin,” Journal of Biological Chemistry, vol. 272, no. 32, pp. 20230–20235, 1997. View at Publisher · View at Google Scholar · View at Scopus
  25. D. Ren, T. N. Collingwood, E. J. Rebar, A. P. Wolffe, and H. S. Camp, “PPARγ knockdown by engineered transcription factors: Exogenous PPARγ2 but not PPARγ1 reactivates adipogenesis,” Genes and Development, vol. 16, no. 1, pp. 27–32, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Yu, N. Viswakarma, S. K. Batra, M. Sambasiva Rao, and J. K. Reddy, “Identification of promethin and PGLP as two novel up-regulated genes in PPARγ1-induced adipogenic mouse liver,” Biochimie, vol. 86, no. 11, pp. 743–761, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. E. Powell, P. Kuhn, and W. Xu, “Nuclear receptor cofactors in PPARγ-mediated adipogenesis and adipocyte energy metabolism,” PPAR Research, vol. 2007, Article ID 53843, 11 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Sabatino, A. Casamassimi, G. Peluso et al., “A novel peroxisome proliferator-activated receptor γ isoform with dominant negative activity generated by alternative splicing,” Journal of Biological Chemistry, vol. 280, no. 28, pp. 26517–26525, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Chawla, E. J. Schwarz, D. D. Dimaculangan, and M. A. Lazar, “Peroxisome proliferator-activated receptor (PPAR) γ: adipose-predominant expression and induction early in adipocyte differentiation,” Endocrinology, vol. 135, no. 2, pp. 798–800, 1994. View at Publisher · View at Google Scholar · View at Scopus
  30. R. M. Evans, G. D. Barish, and Y. X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Kersten, B. Desvergne, and W. Wahli, “Roles of PPARS in health and disease,” Nature, vol. 405, no. 6785, pp. 421–424, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Armani, C. Mammi, V. Marzolla et al., “Cellular models for understanding adipogenesis, adipose dysfunction, and obesity,” Journal of Cellular Biochemistry, vol. 110, no. 3, pp. 564–572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. V. D'Esposito, F. Passaretti, A. Hammarstedt et al., “Adipocyte-released insulin-like growth factor-1 is regulated by glucose and fatty acids and controls breast cancer cell growth in vitro,” Diabetologia, vol. 55, no. 10, pp. 2811–2822, 2012. View at Google Scholar
  34. P. Isakson, A. Hammarstedt, B. Gustafson, and U. Smith, “Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-α, and inflammation,” Diabetes, vol. 58, no. 7, pp. 1550–1557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Costa, I. Conte, C. Ziviello et al., “Identification and expression analysis of novel Jakmip1 transcripts,” Gene, vol. 402, no. 1-2, pp. 1–8, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. V. Costa, L. Sommese, A. Casamassimi et al., “Impairment of circulating endothelial progenitors in Down syndrome,” BMC Medical Genomics, vol. 3, article 40, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. V. Costa, C. Angelini, L. D'Apice et al., “Massive-scale rna-seq analysis of non ribosomal transcriptome in human trisomy 21,” PLoS ONE, vol. 6, no. 4, Article ID e18493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. A. T. Alberobello, V. D'Esposito, D. Marasco et al., “Selective disruption of insulin-like growth factor-1 (IGF-1) signaling via phosphoinositide-dependent kinase-1 prevents the protective effect of IGF-1 on human cancer cell death,” Journal of Biological Chemistry, vol. 285, no. 9, pp. 6563–6572, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. B. Park, H. C. Choi, and N. S. Joo, “The relation of thyroid function to components of the metabolic syndrome in Korean men and women,” Journal of Korean Medical Science, vol. 26, no. 4, pp. 540–545, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. H. P. Koeffler, “Peroxisome proliferator-activated receptor γ and cancers,” Clinical Cancer Research, vol. 9, no. 1, pp. 1–9, 2003. View at Google Scholar · View at Scopus
  41. M. D. Rollins, S. Sudarshan, M. A. Firpo et al., “Anti-inflammatory effects of PPAR-γ agonists directly correlate with PPAR-γ expression during acute pancreatitis,” Journal of Gastrointestinal Surgery, vol. 10, no. 8, pp. 1120–1130, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. R. B. Clark, “The role of PPARs in inflammation and immunity,” Journal of Leukocyte Biology, vol. 71, no. 3, pp. 388–400, 2002. View at Google Scholar · View at Scopus
  43. N. Marx, B. Kehrle, K. Kohlhammer et al., “PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis,” Circulation Research, vol. 90, no. 6, pp. 703–710, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Gupta, K. Goel, P. Shah, and A. Misra, “Childhood obesity in developing countries: epidemiology, determinants, and prevention,” Endocrine Reviews, vol. 33, no. 1, pp. 48–70, 2012. View at Publisher · View at Google Scholar · View at Scopus