Table of Contents Author Guidelines Submit a Manuscript
Psyche
Volume 2012, Article ID 536149, 8 pages
http://dx.doi.org/10.1155/2012/536149
Research Article

Pheromone of the Banana-Spotting Bug, Amblypelta lutescens lutescens Distant (Heteroptera: Coreidae): Identification, Synthesis, and Field Bioassay

1Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Building 007, Room 326, BARC-West, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
2Department of Employment, Economic Development and Innovation, Horticulture and Forestry Science, 28 Peters Street, P.O. Box 1054, Mareeba, QLD 4880, Australia
3School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia

Received 14 February 2012; Accepted 21 April 2012

Academic Editor: Jocelyn G. Millar

Copyright © 2012 Ashot Khrimian et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Waite, “Amblypelta spp. (Hemiptera: Coreidae) and green fruit drop in lychees,” Tropical Pest Management, vol. 36, pp. 353–355, 1990. View at Google Scholar
  2. G. Waite, H. Fay, and J. Rogers, “Fruitspotting bug in northeastern Australia,” Workshop Report CTPM/DPI, Mareeba, Australia, July 1993. View at Google Scholar
  3. M. Ryan, “Damage to pawpaw trees by the banana-spotting bug, Amblypelta lutescens lutescens (Distant) (Heteroptera: Coreidae), in North Queensland,” International Journal of Pest Management, vol. 40, pp. 280–282, 1994. View at Google Scholar
  4. H. Fay, “Fruitpiercing moths and fruitspotting bugs: intractable pests of tree fruits in a reduced insecticide environment,” Acta Horticulturae, vol. 575, no. 2, pp. 485–493, 2002. View at Google Scholar
  5. H. Drew, “Improving the management of spotting bugs in avocados,” Manual Produced as Part of HAL Project AVO6001, HAL/Avocados Australia, 2007.
  6. J. R. Aldrich, G. K. Waite, C. Moore, J. A. Payne, W. R. Lusby, and J. P. Kochansky, “Male-specific volatiles from nearctic and Australasian true bugs (Heteroptera: Coreidae and Alydidae),” Journal of Chemical Ecology, vol. 19, no. 12, pp. 2767–2781, 1993. View at Google Scholar · View at Scopus
  7. H. Kigoshi, M. Ojika, Y. Shizuri, H. Niwa, and K. Yamada, “Isolation of (10R,11R)-(+)-squalene-10,11-epoxide from the red alga Laurencia okamurai and its enantioselective synthesis,” Tetrahedron, vol. 42, no. 14, pp. 3789–3792, 1986. View at Google Scholar · View at Scopus
  8. J. A. Spicer, M. A. Brimble, and D. D. Rowan, “Oxidation of α-farnesene,” Australian Journal of Chemistry, vol. 46, pp. 1929–1939, 1993. View at Google Scholar
  9. S. Yamada, H. Ohsawa, T. Suzuki, and H. Takayama, “Stereoselective synthesis of (E)-, (E,Z)-, and (E,E)-conjugated dienes via alkylation of 3-sulfolenes as the key step,” Chemistry Letters, vol. 12, pp. 1003–1006, 1983. View at Google Scholar · View at Scopus
  10. S. R. Desai, V. K. Gore, and S. V. Bhat, “Highly stereoselective synthesis of α-sinensal and trans-β-ocimenal,” Synthetic Communications, vol. 20, pp. 523–533, 1990. View at Google Scholar
  11. T.-S. Chou, H.-H. Tso, and L.-J. Chang, “Stereoselective one-step syntheses of trans-β-ocimene and α-farnesene,” Journal of the Chemical Society, Chemical Communications, no. 20, pp. 1323–1324, 1984. View at Google Scholar · View at Scopus
  12. S. Yamada, H. Ohsawa, T. Suzuki, and H. Takayama, “Stereoselective synthesis of (E)-, (E,Z)-, and (E,E)-conjugated dienes via alkylation of 3-sulfolenes as the key step,” Journal of Organic Chemistry, vol. 51, no. 25, pp. 4934–4940, 1986. View at Google Scholar · View at Scopus
  13. K. B. Sharpless, W. Amberg, Y. L. Bennani et al., “The osmium-catalyzed asymmetric dihydroxylation: a new ligand class and a process improvement,” Journal of Organic Chemistry, vol. 57, no. 10, pp. 2768–2771, 1992. View at Google Scholar · View at Scopus
  14. M. A. Brimble, D. D. Rowan, and J. A. Spicer, “Synthesis of chiral hydroxylated farnesene derivatives,” Synthesis, no. 1, pp. 116–122, 1996. View at Google Scholar · View at Scopus
  15. S. Fielder and D. D. Rowan, “The synthesis of d6-α-farnesene,” Journal of Labelled Compounds and Radiopharmaceuticals, vol. 34, no. 11, pp. 1075–1085, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Khrimian, P. W. Shearer, A. Zhang, G. C. Hamilton, and J. R. Aldrich, “Field trapping of the invasive brown marmorated stink bug, Halyomorpha halys, with geometric isomers of methyl 2,4,6-decatrienoate,” Journal of Agricultural and Food Chemistry, vol. 56, no. 1, pp. 197–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. VSN International, Genstat, Hemel Hempstead, Hertfordshire, UK, 11th edition, 2008.
  18. C. J. Moore, S. Possner, P. Hayes, G. C. Paddon-Jones, and W. Kitching, “An asymmetric dihydroxylation route to (3R,5E)-2,6-dimethyl-2,3-epoxyocta-5,7-diene: the major volatile component from male fruit-spotting bugs,” Journal of Organic Chemistry, vol. 64, no. 26, pp. 9742–9744, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. G. A. Crispino and K. B. Sharpless, “Asymmetric dihydroxylation of squalene,” Tetrahedron Letters, vol. 33, no. 30, pp. 4273–4274, 1992. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Frater and U. Müller, “Synthesis of (+)-(4S,8R)-8-epi- and (-)-(4R,8S)-4-epi-β-bisabolol,” Helvetica Chimica Acta, vol. 72, pp. 653–658, 1989. View at Google Scholar
  21. J. Šobotník, R. Hanus, B. Kalinová et al., “(E,E)-α-farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons,” Journal of Chemical Ecology, vol. 34, no. 4, pp. 478–486, 2008. View at Publisher · View at Google Scholar · View at Scopus