Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2011, Article ID 434392, 8 pages
http://dx.doi.org/10.4061/2011/434392
Review Article

Optimization Manufacture of Virus- and Tumor-Specific T Cells

Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX77030, USA

Received 26 April 2011; Accepted 20 June 2011

Academic Editor: Anna Rita Migliaccio

Copyright © 2011 Natalia Lapteva and Juan F. Vera. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. M. Leen, A. Christin, G. D. Myers et al., “Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation,” Blood, vol. 114, no. 19, pp. 4283–4292, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. M. Cobbold, N. Khan, B. Pourgheysari et al., “Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers,” Journal of Experimental Medicine, vol. 202, no. 3, pp. 379–386, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. H. Einsele, E. Roosnek, N. Rufer et al., “Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy,” Blood, vol. 99, no. 11, pp. 3916–3922, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Rooney, C. A. Smith, C. Y. Ng et al., “Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients,” Blood, vol. 92, no. 5, pp. 1549–1555, 1998. View at Google Scholar · View at Scopus
  5. C. M. Bollard, S. Gottschalk, A. M. Leen et al., “Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer,” Blood, vol. 110, no. 8, pp. 2838–2845, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. D. L. Porter, B. L. Levine, N. Bunin et al., “A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation,” Blood, vol. 107, no. 4, pp. 1325–1331, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. J. J. Hong, S. A. Rosenberg, M. E. Dudley et al., “Successful treatment of melanoma brain metastases with adoptive cell therapy,” Clinical Cancer Research, vol. 16, no. 19, pp. 4892–4898, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. R. A. Morgan, M. E. Dudley, J. R. Wunderlich et al., “Cancer regression in patients after transfer of genetically engineered lymphocytes,” Science, vol. 314, no. 5796, pp. 126–129, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. P. Comoli, P. Pedrazzoli, R. Maccario et al., “Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes,” Journal of Clinical Oncology, vol. 23, no. 35, pp. 8942–8949, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. C. U. Louis, K. Straathof, C. M. Bollard et al., “Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma,” Journal of Immunotherapy, vol. 33, no. 9, pp. 983–990, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. M. A. Pule, B. Savoldo, G. D. Myers et al., “Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma,” Nature Medicine, vol. 14, no. 11, pp. 1264–1270, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. P. Tiberghien, C. Ferrand, B. Lioure et al., “Administration of herpes simplex-thymidine kinase-expressing donor T cells with a T-cell-depleted allogeneic marrow graft,” Blood, vol. 97, no. 1, pp. 63–72, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Yvon, V. M. Del, B. Savoldo et al., “Immunotherapy of metastatic melanoma using genetically engineered GD2-specific T cells,” Clinical Cancer Research, vol. 15, no. 18, pp. 5852–5860, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. Z. Eshhar, T. Waks, G. Gross, and D. G. Schindler, “Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 2, pp. 720–724, 1993. View at Publisher · View at Google Scholar · View at Scopus
  15. S. A. Di, A. B. De, C. M. Rooney et al., “T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model,” Blood, vol. 113, no. 25, pp. 6392–6402, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. D. Dilloo, K. Bacon, W. Holden et al., “Combined chemokine and cytokine gene transfer enhances antitumor immunity,” Nature Medicine, vol. 2, no. 10, pp. 1090–1095, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Ciceri, C. Bonini, M. T. Stanghellini et al., “Infusion of suicide-gene-engineered donor lymphocytes after family haploidentical haemopoietic stem-cell transplantation for leukaemia (the TK007 trial): a non-randomised phase I-II study,” The Lancet Oncology, vol. 10, no. 5, pp. 489–500, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. C. Thomis, S. Marktel, C. Bonini et al., “A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease,” Blood, vol. 97, no. 5, pp. 1249–1257, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. K. C. Straathof, M. A. Pule, P. Yotnda et al., “An inducible caspase 9 safety switch for T-cell therapy,” Blood, vol. 105, no. 11, pp. 4247–4254, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. S. K. Tey, G. Dotti, C. M. Rooney, H. E. Heslop, and M. K. Brenner, “Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation,” Biology of Blood and Marrow Transplantation, vol. 13, no. 8, pp. 913–924, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. C. Yee, J. A. Thompson, D. Byrd et al., “Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: In vivo persistence, migration, and antitumor effect of transferred T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 16168–16173, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. J. L. Schultze, S. Michalak, M. J. Seamon et al., “CD40-activated human B cells: an alternative source of highly efficient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy,” Journal of Clinical Investigation, vol. 100, no. 11, pp. 2757–2765, 1997. View at Google Scholar · View at Scopus
  23. C. C. Malone, P. M. Schiltz, A. D. Mackintosh, L. D. Beutel, F. S. Heinemann, and R. O. Dillman, “Characterization of human tumor-infiltrating lymphocytes expanded in hollow-fiber bioreactors for immunotherapy of cancer,” Cancer Biotherapy and Radiopharmaceuticals, vol. 16, no. 5, pp. 381–390, 2001. View at Google Scholar · View at Scopus
  24. M. Leong, W. Babbitt, and G. Vyas, “A hollow-fiber bioreactor for expanding HIV-1 in human lymphocytes used in preparing an inactivated vaccine candidate,” Biologicals, vol. 35, no. 4, pp. 227–233, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. C. A. Tran, L. Burton, D. Russom et al., “Manufacturing of large numbers of patient-specific T cells for adoptive immunotherapy: an approach to improving product safety, composition, and production capacity,” Journal of Immunotherapy, vol. 30, no. 6, pp. 644–654, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. H. Bohnenkamp, U. Hilbert, and T. Noll, “Bioprocess development for the cultivation of human T-lymphocytes in a clinical scale,” Cytotechnology, vol. 38, no. 1-3, pp. 135–145, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. C. H. Lamers, J. W. Gratama, B. Luider-Vrieling, R. L. Bolhuis, and E. J. Bast, “Large-scale production of natural cytokines during activation and expansion of human T lymphocytes in hollow fiber bioreactor cultures,” Journal of Immunotherapy, vol. 22, no. 4, pp. 299–307, 1999. View at Google Scholar · View at Scopus
  28. K. S. Carswell and E. T. Papoutsakis, “Culture of human T cells in stirred bioreactors for cellular immunotherapy applications: shear, proliferation, and the IL-2 receptor,” Biotechnology and Bioengineering, vol. 68, no. 3, pp. 328–338, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. J. A. Thompson, R. A. Figlin, C. Sifri-Steele, R. J. Berenson, and M. W. Frohlich, “A phase I trial of CD3/CD28-activated T Cells (Xcellerated T Cells) and interleukin-2 in patients with metastatic renal cell carcinoma,” Clinical Cancer Research, vol. 9, no. 10, pp. 3562–3570, 2003. View at Google Scholar · View at Scopus
  30. B. L. Levine, “T lymphocyte engineering ex vivo for cancer and infectious disease,” Expert Opinion on Biological Therapy, vol. 8, no. 4, pp. 475–489, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. P. Rapoport, N. A. Aqui, E. A. Stadtmauer et al., “Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma,” Blood, vol. 117, no. 3, pp. 788–797, 2011. View at Publisher · View at Google Scholar · View at PubMed
  32. J. F. Vera, L. J. Brenner, U. Gerdemann et al., “Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex),” Journal of Immunotherapy, vol. 33, no. 3, pp. 305–315, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  33. T. Haque, G. M. Wilkie, M. M. Jones et al., “Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial,” Blood, vol. 110, no. 4, pp. 1123–1131, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. J. N. Barker, E. Doubrovina, C. Sauter et al., “Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes,” Blood, vol. 116, no. 23, pp. 5045–5049, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. U. Gerdemann, A. S. Christin, J. F. Vera et al., “Nucleofection of DCs to generate multivirus-specific T cells for prevention or treatment of viral infections in the immunocompromised host,” Molecular Therapy, vol. 17, no. 9, pp. 1616–1625, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus