Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2011 (2011), Article ID 717069, 14 pages
http://dx.doi.org/10.4061/2011/717069
Research Article

Efficient Non-Viral Integration and Stable Gene Expression in Multipotent Adult Progenitor Cells

1Center for Genome Engineering, Gene Therapy Program, Institute of Human Genetics, University of Minnesota, Minneapolis, MN 55455, USA
2Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
3Department of Medical Microbiology, Immunology and Cell Biology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
4Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
5Department of Physiology, Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
6Interdepartmental Stem Cell Institute, Katholieke University Leuven, Leuven, Belgium
7Life Technologies, 5781 Van Allen Way, Carlsbad, CA 92008, USA

Received 14 January 2011; Revised 1 June 2011; Accepted 15 June 2011

Academic Editor: Mark G. Carter

Copyright © 2011 Andrew Wilber et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Jiang, B. N. Jahagirdar, R. L. Reinhardt et al., “Pluripotency of mesenchymal stem cells derived from adult marrow,” Nature, vol. 418, no. 6893, pp. 41–49, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Reyes and C. M. Verfaillie, “Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells,” Annals of the New York Academy of Sciences, vol. 938, pp. 231–235, 2001. View at Google Scholar · View at Scopus
  3. L. R. Zhao, W. M. Duan, M. Reyes, C. M. Verfaillie, and W. C. Low, “Immunohistochemical identification of multipotent adult progenitor cells from human bone marrow after transplantation into the rat brain,” Brain Research Protocols, vol. 11, no. 1, pp. 38–45, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Jiang, D. Henderson, M. Blackstad, A. Chen, R. F. Miller, and C. M. Verfaillie, “Neuroectodermal differentiation from mouse multipotent adult progenitor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 11854–11860, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. C. D. Keene, X. R. Ortiz-Gonzalez, Y. Jiang, D. A. Largaespada, C. M. Verfaillie, and W. C. Low, “Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos,” Cell Transplantation, vol. 12, no. 3, pp. 201–213, 2003. View at Google Scholar · View at Scopus
  6. M. Reyes, A. Dudek, B. Jahagirdar, L. Koodie, P. H. Marker, and C. M. Verfaillie, “Origin of endothelial progenitors in human postnatal bone marrow,” The Journal of Clinical Investigation, vol. 109, no. 3, pp. 337–346, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. R. E. Schwartz, M. Reyes, L. Koodie et al., “Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells,” The Journal of Clinical Investigation, vol. 109, no. 10, pp. 1291–1302, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Serafini, S. J. Dylla, M. Oki et al., “Hematopoietic reconstitution by multipotent adult progenitor cells: precursors to long-term hematopoietic stem cells,” Journal of Experimental Medicine, vol. 204, no. 1, pp. 129–139, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. X. L. Aranguren, J. D. McCue, B. Hendrickx et al., “Multipotent adult progenitor cells sustain function of ischemic limbs in mice,” The Journal of Clinical Investigation, vol. 118, no. 2, pp. 505–514, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. B. Pelacho, Y. Nakamura, J. Zhang et al., “Multipotent adult progenitor cell transplantation increases vascularity and improves left ventricular function after myocardial infarction,” Journal of Tissue Engineering and Regenerative Medicine, vol. 1, no. 1, pp. 51–59, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Tolar, X. Wang, E. Braunlin et al., “The host immune response is essential for the beneficial effect of adult stem cells after myocardial ischemia,” Experimental Hematology, vol. 35, no. 4, pp. 682–690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. I. Dimomeletis, E. Deindl, M. Zaruba et al., “Assessment of human MAPCs for stem cell transplantation and cardiac regeneration after myocardial infarction in SCID mice,” Experimental Hematology, vol. 38, no. 11, pp. 1105–1114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Kovacsovics-Bankowski, P. R. Streeter, K. A. Mauch et al., “Clinical scale expanded adult pluripotent stem cells prevent graft-versus-host disease,” Cellular Immunology, vol. 255, no. 1-2, pp. 55–60, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. S. L. Highfill, R. M. Kelly, M. J. O'Shaughnessy et al., “Multipotent adult progenitor cells can suppress graft-versus-host disease via prostaglandin E2 synthesis and only if localized to sites of allopriming,” Blood, vol. 114, no. 3, pp. 693–701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. R. H. A. Plasterk, Z. Izsvák, and Z. Ivics, “Resident aliens the Tc1/mariner superfamily of transposable elements,” Trends in Genetics, vol. 15, no. 8, pp. 326–332, 1999. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Ivics, P. B. Hackett, R. H. Plasterk, and Z. Izsvák, “Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells,” Cell, vol. 91, no. 4, pp. 501–510, 1997. View at Google Scholar · View at Scopus
  17. Z. Izsvák, Z. Ivics, and R. H. Plasterk, “Sleeping beauty, a wide host-range transposon vector for genetic trensformation in vertebrates,” Journal of Molecular Biology, vol. 302, no. 1, pp. 93–102, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Wilber, J. L. Frandsen, J. L. Geurts, D. A. Largaespada, P. B. Hackett, and R. S. McIvor, “RNA as a source of transposase for Sleeping Beauty-mediated gene insertion and expression in somatic cells and tissues,” Molecular Therapy, vol. 13, no. 3, pp. 625–630, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. A. D. Converse, L. R. Belur, J. L. Gori et al., “Counterselection and co-delivery of transposon and transposase functions for Sleeping Beauty-mediated transposition in cultured mammalian cells,” Bioscience Reports, vol. 24, no. 6, pp. 577–594, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ehrhardt, H. Xu, Z. Huang, J. A. Engler, and M. A. Kay, “A direct comparison of two nonviral gene therapy vectors for somatic integration: in vivo evaluation of the bacteriophage integrase φC31 and the Sleeping Beauty transposase,” Molecular Therapy, vol. 11, no. 5, pp. 695–706, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. J. G. Mikkelsen, S. R. Yant, L. Meuse, Z. Huang, H. Xu, and M. A. Kay, “Helper-independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo,” Molecular Therapy, vol. 8, no. 4, pp. 654–665, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Montini, P. K. Held, M. Noll et al., “In vivo correction of murine tyrosinemia type I by DNA-mediated transposition,” Molecular Therapy, vol. 6, no. 6, pp. 759–769, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. J. R. Ohlfest, J. L. Frandsen, S. Fritz et al., “Phenotypic correction and long-term expression of factor VIII in hemophilic mice by immunotolerization and nonviral gene transfer using the Sleeping Beauty transposon system,” Blood, vol. 105, no. 7, pp. 2691–2698, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. P. R. Score, L. R. Belur, J. L. Frandsen et al., “Sleeping beauty-mediated transposition and long-term expression in vivo: use of the LoxP/Cre recombinase system to distinguish transposition-specific expression,” Molecular Therapy, vol. 13, no. 3, pp. 617–624, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. S. R. Yant, L. Meuse, W. Chiu, Z. Ivics, Z. Izsvak, and M. A. Kay, “Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system,” Nature Genetics, vol. 25, no. 1, pp. 35–41, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Ortiz-Urda, Q. Lin, S. R. Yant, D. Keene, M. A. Kay, and P. A. Khavari, “Sustainable correction of junctional epidermolysis bullosa via transposon-mediated nonviral gene transfer,” Gene Therapy, vol. 10, no. 13, pp. 1099–1104, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. L. R. Belur, J. L. Frandsen, A. J. Dupuy et al., “Gene insertion and long-term expression in lung mediated by the Sleeping Beauty transposon system,” Molecular Therapy, vol. 8, no. 3, pp. 501–507, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Liu, C. Mah, and B. S. Fletcher, “Sustained FVIII expression and phenotypic correction of hemophilia A in neonatal mice using an endothelial-targeted sleeping beauty transposon,” Molecular Therapy, vol. 13, no. 5, pp. 1006–1015, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. L. Liu, S. Sanz, A. D. Heggestad, V. Antharam, L. Notterpek, and B. S. Fletcher, “Endothelial targeting of the Sleeping Beauty transposon within lung,” Molecular Therapy, vol. 10, no. 1, pp. 97–105, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. X. Huang, A. C. Wilber, L. Bao et al., “Stable gene transfer and expression in human primary T cells by the Sleeping Beauty transposon system,” Blood, vol. 107, no. 2, pp. 483–491, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Luo, Z. Ivics, Z. Izsvák, and A. Bradley, “Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 18, pp. 10769–10773, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Yusa, J. Takeda, and K. Horie, “Enhancement of Sleeping Beauty transposition by CpG methylation: possible role of heterochromatin formation,” Molecular and Cellular Biology, vol. 24, no. 9, pp. 4004–4018, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Wilber, J. L. Linehan, X. Tian et al., “Efficient and stable transgene expression in human embryonic stem cells using transposon-mediated gene transfer,” Stem Cells, vol. 25, no. 11, pp. 2919–2927, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. T. I. Orbán, A. Apáti, A. Németh et al., “Applying a “double-feature” promoter to identify cardiomyocytes differentiated from human embryonic stem cells following transposon-based gene delivery,” Stem Cells, vol. 27, no. 5, pp. 1077–1087, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Tolar, M. Osborn, S. Bell et al., “Real-time in vivo imaging of stem cells following transgenesis by transposition,” Molecular Therapy, vol. 12, no. 1, pp. 42–48, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Xue, X. Huang, S. E. Nodland et al., “Stable gene transfer and expression in cord blood-derived CD34+ hematopoietic stem and progenitor cells by a hyperactive Sleeping Beauty transposon system,” Blood, vol. 114, no. 7, pp. 1319–1330, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. L. Mátés, M. K. L. Chuah, E. Belay et al., “Molecular evolution of a novel hyperactive Sleeping Beauty transposase enables robust stable gene transfer in vertebrates,” Nature Genetics, vol. 41, no. 6, pp. 753–761, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. H. M. Thorpe and M. C. M. Smith, “In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the-resolvase/invertase family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 10, pp. 5505–5510, 1998. View at Google Scholar · View at Scopus
  39. A. C. Groth, E. C. Olivares, B. Thyagarajan, and M. P. Calos, “A phage integrase directs efficient site-specific integration in human cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 11, pp. 5995–6000, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Thyagarajan, E. C. Olivares, R. P. Hollis, D. S. Ginsburg, and M. P. Calos, “Site-specific genomic integration in mammalian cells mediated by phage φC31 integrase,” Molecular and Cellular Biology, vol. 21, no. 12, pp. 3926–3934, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. A. C. Groth and M. P. Calos, “Phage integrases: biology and applications,” Journal of Molecular Biology, vol. 335, no. 3, pp. 667–678, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. T. W. Chalberg, J. L. Portlock, E. C. Olivares et al., “Integration specificity of phage φC31 integrase in the human genome,” Journal of Molecular Biology, vol. 357, no. 1, pp. 28–48, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. P. K. Held, E. C. Olivares, C. P. Aguilar, M. Finegold, M. P. Calos, and M. Grompe, “In vivo correction of murine hereditary tyrosinemia type I by φC31 integrase-mediated gene delivery,” Molecular Therapy, vol. 11, no. 3, pp. 399–408, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. E. C. Olivares, R. P. Hollis, T. W. Chalberg, L. Meuse, M. A. Kay, and M. P. Calos, “Site-specific genomic integration produces therapeutic factor IX levels in mice,” Nature Biotechnology, vol. 20, no. 11, pp. 1124–1128, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Ortiz-Urda, B. Thyagarajan, D. R. Keene, Q. Lin, M. P. Calos, and P. A. Khavari, “φC31 integrase-mediated nonviral genetic correction of junctional epidermolysis bullosa,” Human Gene Therapy, vol. 14, no. 9, pp. 923–928, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. S. P. Quenneville, P. Chapdelaine, J. Rousseau et al., “Nucleofection of muscle-derived stem cells and myoblasts with φC31 integrase: stable expression of a full-length-dystrophin fusion gene by human myoblasts,” Molecular Therapy, vol. 10, no. 4, pp. 679–687, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Belteki, M. Gertsenstein, D. W. Ow, and A. Nagy, “Site-specific cassette exchange and germline transmission with mouse ES cells expressing φC31 integrase,” Nature Biotechnology, vol. 21, no. 3, pp. 321–324, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. Liu, B. Thyagarajan, U. Lakshmipathy et al., “Generation of platform human embryonic stem cell lines that allow efficient targeting at a predetermined genomic location,” Stem Cells and Development, vol. 18, no. 10, pp. 1459–1471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. Z. Cui, A. M. Geurts, G. Liu, C. D. Kaufman, and P. B. Hackett, “Structure-function analysis of the inverted terminal repeats of the Sleeping Beauty transposon,” Journal of Molecular Biology, vol. 318, no. 5, pp. 1221–1235, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. A. M. Geurts, Y. Yang, K. J. Clark et al., “Gene transfer into genomes of human cells by the Sleeping Beauty transposon system,” Molecular Therapy, vol. 8, no. 1, pp. 108–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Wilber, J. L. Frandsen, K. J. Wangensteen, S. C. Ekker, X. Wang, and R. S. McIvor, “Dynamic gene expression after systemic delivery of plasmid DNA as determined by in vivo bioluminescence imaging,” Human Gene Therapy, vol. 16, no. 11, pp. 1325–1332, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. U. Lakshmipathy, B. Pelacho, K. Sudo et al., “Efficient transfection of embryonic and adult stem cells,” Stem Cells, vol. 22, no. 4, pp. 531–543, 2004. View at Google Scholar · View at Scopus
  53. U. Lakshmipathy, L. Hammer, and C. Verfaillie, “METHOD—a nonviral gene transfer method for transfecting multipotent adult progenitor cells (MAPC),” Gene Therapy and Regulation, vol. 2, no. 4, pp. 301–312, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. L. S. Collier, C. M. Carlson, S. Ravimohan, A. J. Dupuy, and D. A. Largaespada, “Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse,” Nature, vol. 436, no. 7048, pp. 272–276, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Rasheed, W. A. Nelson Rees, and E. M. Toth, “Characterization of a newly derived human sarcoma cell line (HT 1080),” Cancer, vol. 33, no. 4, pp. 1027–1033, 1974. View at Google Scholar · View at Scopus
  56. J. Baus, L. Liu, A. D. Heggestad, S. Sanz, and B. S. Fletcher, “Hyperactive transposase mutants of the Sleeping Beauty transposon,” Molecular Therapy, vol. 12, no. 6, pp. 1148–1156, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. S. R. Yant, J. Park, Y. Huang, J. G. Mikkelsen, and M. A. Kay, “Mutational analysis of the N-terminal DNA-binding domain of sleeping beauty transposase: critical residues for DNA binding and hyperactivity in mammalian cells,” Molecular and Cellular Biology, vol. 24, no. 20, pp. 9239–9247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Emerman and H. M. Temin, “Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism,” Cell, vol. 39, no. 3, part 2, pp. 459–467, 1984. View at Google Scholar · View at Scopus
  59. S. Hacein-Bey-Abina, C. Von Kalle, M. Schmidt et al., “LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1,” Science, vol. 302, no. 5644, pp. 415–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. R. S. Mitchell, B. F. Beitzel, A. R.W. Schroder et al., “Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences,” PLoS Biology, vol. 2, no. 8, article e234, 2004. View at Publisher · View at Google Scholar
  61. A. R. W. Schröder, P. Shinn, H. Chen, C. Berry, J. R. Ecker, and F. Bushman, “HIV-1 integration in the human genome favors active genes and local hotspots,” Cell, vol. 110, no. 4, pp. 521–529, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. M. G. Ott, M. Schmidt, K. Schwarzwaelder et al., “Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1,” Nature Medicine, vol. 12, no. 4, pp. 401–409, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Du, N. A. Jenkins, and N. G. Copeland, “Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells,” Blood, vol. 106, no. 12, pp. 3932–3939, 2005. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Narezkina, K. D. Taganov, S. Litwin et al., “Genome-wide analyses of avian sarcoma virus integration sites,” Journal of Virology, vol. 78, no. 21, pp. 11656–11663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. X. Wu, Y. Li, B. Crise, and S. M. Burgess, “Transcription start regions in the human genome are favored targets for MLV integration,” Science, vol. 300, no. 5626, pp. 1749–1751, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. S. R. Yant, X. Wu, Y. Huang, B. Garrison, S. M. Burgess, and M. A. Kay, “High-resolution genome-wide mapping of transposon integration in mammals,” Molecular and Cellular Biology, vol. 25, no. 6, pp. 2085–2094, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. C. M. Carlson, A. J. Dupuy, S. Fritz, K. J. Roberg-Perez, C. F. Fletcher, and D. A. Largaespada, “Transposon mutagenesis of the mouse germline,” Genetics, vol. 165, no. 1, pp. 243–256, 2003. View at Google Scholar · View at Scopus
  68. T. J. Vigdal, C. D. Kaufman, Z. Izsvák, D. F. Voytas, and Z. Ivics, “Common physical properties of DNA affecting target site selection of Sleeping Beauty and other Tc1/mariner transposable elements,” Journal of Molecular Biology, vol. 323, no. 3, pp. 441–452, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Baum, O. Kustikova, U. Modlich, Z. Li, and B. Fehse, “Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors,” Human Gene Therapy, vol. 17, no. 3, pp. 253–263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. T. W. Chalberg, H. L. Genise, D. Vollrath, and M. P. Calos, “φC31 integrase confers genomic integration and long-term transgene expression in rat retina,” Investigative Ophthalmology and Visual Science, vol. 46, no. 6, pp. 2140–2146, 2005. View at Publisher · View at Google Scholar · View at Scopus