Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2011 (2011), Article ID 765378, 9 pages
http://dx.doi.org/10.4061/2011/765378
Research Article

Derivation of Two New Human Embryonic Stem Cell Lines from Nonviable Human Embryos

1Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, 701 West 168th Street, New York, NY 10032, USA
2Department of Biomedical Engineering, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
3Department of Obstetrics and Gynecology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
4Division of Experimental Therapeutics, Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA

Received 14 December 2010; Accepted 17 March 2011

Academic Editor: Qiang Feng

Copyright © 2011 Svetlana Gavrilov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Klimanskaya, N. Rosenthal, and R. Lanza, “Derive and conquer: sourcing and differentiating stem cells for therapeutic applications,” Nature Reviews Drug Discovery, vol. 7, no. 2, pp. 131–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Améen, R. Strehl, P. Björquist, A. Lindahl, J. Hyllner, and P. Sartipy, “Human embryonic stem cells: current technologies and emerging industrial applications,” Critical Reviews in Oncology/Hematology, vol. 65, no. 1, pp. 54–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. G. G. Cezar, “Can human embryonic stem cells contribute to the discovery of safer and more effective drugs?” Current Opinion in Chemical Biology, vol. 11, no. 4, pp. 405–409, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. C. E. Gargett, “Review article: stem cells in human reproduction,” Reproductive Sciences, vol. 14, no. 5, pp. 405–424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Amabile and A. Meissner, “Induced pluripotent stem cells: current progress and potential for regenerative medicine,” Trends in Molecular Medicine, vol. 15, no. 2, pp. 59–68, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. K. Ichida, J. Blanchard, K. Lam et al., “A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog,” Cell Stem Cell, vol. 5, no. 5, pp. 491–503, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. M. H. Chin, M. J. Mason, W. Xie et al., “Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures,” Cell Stem Cell, vol. 5, no. 1, pp. 111–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Lee, J. Park, B. G. Forget, and P. Gaines, “Induced pluripotent stem cells in regenerative medicine: an argument for continued research on human embryonic stem cells,” Regenerative Medicine, vol. 4, no. 5, pp. 759–769, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. M. Polo, S. Liu, M. E. Figueroa et al., “Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells,” Nature Biotechnology, vol. 28, no. 8, pp. 848–855, 2010. View at Publisher · View at Google Scholar
  12. K. Kim, A. Doi, B. Wen et al., “Epigenetic memory in induced pluripotent stem cells,” Nature, vol. 467, no. 7313, pp. 285–290, 2010. View at Publisher · View at Google Scholar
  13. S. Gavrilov, V. E. Papaioannou, and D. W. Landry, “Alternative strategies for the derivation of human embryonic stem cell lines and the role of dead embryos,” Current Stem Cell Research and Therapy, vol. 4, no. 1, pp. 81–86, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Alikani, G. Calderon, G. Tomkin, J. Garrisi, M. Kokot, and J. Cohen, “Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro,” Human Reproduction, vol. 15, no. 12, pp. 2634–2643, 2000. View at Google Scholar · View at Scopus
  15. M. C. Magli, L. Gianaroli, and A. P. Ferraretti, “Chromosomal abnormalities in embryos,” Molecular and Cellular Endocrinology, vol. 183, supplement 1, pp. S29–S34, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Munné, S. Chen, P. Collis et al., “Maternal age, morphology, development and chromosome abnormalities in over 6000 cleavage-stage embryos,” Reproductive BioMedicine Online, vol. 14, no. 5, pp. 628–634, 2007. View at Google Scholar · View at Scopus
  17. J. M. Cummins, T. M. Breen, and K. L. Harrison, “A formula for scoring human embryo growth rates in in vitro fertilization: its value in predicting pregnancy and comparison with visual estimates of embryo quality,” Journal of In Vitro Fertilization and Embryo Transfer, vol. 3, no. 5, pp. 284–295, 1986. View at Google Scholar · View at Scopus
  18. D. K. Gardner, M. Lane, J. Stevens, T. Schlenker, and W. B. Schoolcraft, “Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer,” Fertility and Sterility, vol. 73, no. 6, pp. 1155–1158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Alikani and S. M. Willadsen, “Human blastocysts from aggregated mononucleated cells of two or more non-viable zygote-derived embryos,” Reproductive Biomedicine Online, vol. 5, no. 1, pp. 56–58, 2002. View at Google Scholar · View at Scopus
  20. S. Gavrilov, R. W. Prosser, I. Khalid et al., “Non-viable human embryos as a source of viable cells for embryonic stem cell derivation,” Reproductive BioMedicine Online, vol. 18, no. 2, pp. 301–308, 2009. View at Google Scholar · View at Scopus
  21. D. W. Landry and H. A. Zucker, “Embryonic death and the creation of human embryonic stem cells,” Journal of Clinical Investigation, vol. 114, no. 9, pp. 1184–1186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. D. W. Landry, H. A. Zucker, M. V. Sauer, M. Reznik, and L. Wiebe, “Hypocellularity and absence of compaction as criteria for embryonic death,” Regenerative Medicine, vol. 1, no. 3, pp. 367–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Zhang, P. Stojkovic, S. Przyborski et al., “Derivation of human embryonic stem cells from developing and arrested embryos,” Stem Cells, vol. 24, no. 12, pp. 2669–2676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. P. H. Lerou, A. Yabuuchi, H. Huo et al., “Human embryonic stem cell derivation from poor-quality embryos,” Nature Biotechnology, vol. 26, no. 2, pp. 212–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. O. Adewumi, B. Aflatoonian, L. Ahrlund-Richter et al., “Characterization of human embryonic stem cell lines by the International Stem Cell Initiative,” Nature Biotechnology, vol. 25, no. 7, pp. 803–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. P. H. Lerou, A. Yabuuchi, H. Huo et al., “Human embryonic stem cell derivation from poor-quality embryos,” Nature Biotechnology, vol. 26, no. 2, pp. 212–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. A. E. Chen, D. Egli, K. Niakan et al., “Optimal timing of inner cell mass isolation increases the efficiency of human embryonic stem cell derivation and allows generation of sibling cell lines,” Cell Stem Cell, vol. 4, no. 2, pp. 103–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C. A. Cowan, I. Klimanskaya, J. McMahon et al., “Derivation of embryonic stem-cell lines from human blastocysts,” New England Journal of Medicine, vol. 350, no. 13, pp. 1353–1356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. M. S. Inamdar, P. Venu, M. S. Srinivas, K. Rao, and K. Vijayraghavan, “Derivation and characterization of two sibling human embryonic stem cell lines from discarded grade III embryos,” Stem Cells and Development, vol. 18, no. 3, pp. 423–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. Li and L. Li, “Understanding hematopoietic stem-cell microenvironments,” Trends in Biochemical Sciences, vol. 31, no. 10, pp. 589–595, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Mitalipova, J. Calhoun, S. Shin et al., “Human embryonic stem cell lines derived from discarded embryos,” Stem Cells, vol. 21, no. 5, pp. 521–526, 2003. View at Google Scholar · View at Scopus
  32. D. E. C. Baker, N. J. Harrison, E. Maltby et al., “Adaptation to culture of human embryonic stem cells and oncogenesis in vivo,” Nature Biotechnology, vol. 25, no. 2, pp. 207–215, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Spits, I. Mateizel, M. Geens et al., “Recurrent chromosomal abnormalities in human embryonic stem cells,” Nature Biotechnology, vol. 26, no. 12, pp. 1361–1363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Chen, K. Qian, J. Hu et al., “The derivation of two additional human embryonic stem cell lines from day 3 embryos with low morphological scores,” Human Reproduction, vol. 20, no. 8, pp. 2201–2206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Feki, A. Bosman, J. B. Dubuisson et al., “Derivation of the first Swiss human embryonic stem cell line from a single blastomere of an arrested four-cell-stage embryo,” Swiss Medical Weekly, vol. 138, no. 37-38, pp. 540–550, 2008. View at Google Scholar · View at Scopus
  36. W. Liu, Y. Yin, X. Long et al., “Derivation and characterization of human embryonic stem cell lines from poor quality embryos,” Journal of Genetics and Genomics, vol. 36, no. 4, pp. 229–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Raya, I. Rodríguez-Pizà, B. Arán et al., “Generation of cardiomyocytes from new human embryonic stem cell lines derived from poor-quality blastocysts,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 73, pp. 127–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. E. L. Stephenson, P. R. Braude, and C. Mason, “Proposal for a universal minimum information convention for the reporting on the derivation of human embryonic stem cell lines,” Regenerative Medicine, vol. 1, no. 6, pp. 739–750, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. E. L. Stephenson, P. R. Braude, C. Mason, and K. Rowland, “International community consensus standard for reporting derivation of human embryonic stem cell lines,” Regenerative Medicine, vol. 2, no. 4, pp. 349–362, 2007. View at Publisher · View at Google Scholar · View at Scopus