Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 309187, 12 pages
http://dx.doi.org/10.1155/2012/309187
Review Article

Engaging Stem Cells for Customized Tendon Regeneration

1Division of Pediatric Urology, Children's Memorial Hospital of Chicago, Chicago, IL, USA
2Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
3Institute for BioNanotechnology in Medicine (IBNAM), 303 East Superior Street, Northwestern University, IBNAM 11-113, Chicago, IL 60611, USA

Received 19 January 2012; Accepted 13 March 2012

Academic Editor: Ingo Müller

Copyright © 2012 Hatim Thaker and Arun K. Sharma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Sharma and N. Maffulli, “Basic biology of tendon injury and healing,” Surgeon, vol. 3, no. 5, pp. 309–316, 2005. View at Google Scholar · View at Scopus
  2. C. Frey, M. Shereff, and N. Greenidge, “Vascularity of the posterior tibial tendon,” Journal of Bone and Joint Surgery A, vol. 72, no. 6, pp. 884–888, 1990. View at Google Scholar · View at Scopus
  3. T. Molloy, Y. Wang, and G. A. C. Murrell, “The roles of growth factors in tendon and ligament healing,” Sports Medicine, vol. 33, no. 5, pp. 381–394, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. P. R. Manske, R. H. Gelberman, and P. A. Lesker, “Flexor tendon healing,” Hand Clinics, vol. 1, no. 1, pp. 25–34, 1985. View at Google Scholar · View at Scopus
  5. M. B. Klein, H. Pham, N. Yalamanchi, and J. Chang, “Flexor tendon wound healing in vitro the effect of lactate on tendon cell proliferation and collagen production,” Journal of Hand Surgery, vol. 26, no. 5, pp. 847–854, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. I. Boyer, J. T. Watson, J. Lou, P. R. Manske, R. H. Gelberman, and S. Rong Cai, “Quantitative variation in vascular endothelial growth factor mRNA expression during early flexor tendon healing: an investigation in a canine model,” Journal of Orthopaedic Research, vol. 19, no. 5, pp. 869–872, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. H. P. Ehrlich, P. A. Lambert, G. C. Saggers, R. L. Myers, and R. M. Hauck, “Dynamic changes appearing in collagen fibers during intrinsic tendon repair,” Annals of Plastic Surgery, vol. 54, no. 2, pp. 201–206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Frank, S. L. Woo, D. Amiel, F. Harwood, M. Gomez, and W. Akeson, “Medial collateral ligament healing. A multidisciplinary assessment in rabbits,” The American Journal of Sports Medicine, vol. 11, no. 6, pp. 379–389, 1983. View at Google Scholar
  9. M. F. Graham, H. Becker, I. K. Cohen, W. Merritt, and R. F. Diegelmann, “Intrinsic tendon fibroplasia: documentation by in vitro studies,” Journal of Orthopaedic Research, vol. 1, no. 3, pp. 251–256, 1983. View at Publisher · View at Google Scholar
  10. R. L. Trelstad and K. Hayashi, “Tendon collagen fibrillogenesis: intracellular subassemblies and cell surface changes associated with fibril growth,” Developmental Biology, vol. 71, no. 2, pp. 228–242, 1979. View at Google Scholar · View at Scopus
  11. D. E. Birk and R. L. Trelstad, “Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation,” Journal of Cell Biology, vol. 103, no. 1, pp. 231–240, 1986. View at Google Scholar · View at Scopus
  12. D. E. Birk, J. F. Southern, E. I. Zycband, J. T. Fallon, and R. L. Trelstad, “Collagen fibril bundles: a branching assembly unit in tendon morphogenesis,” Development, vol. 107, no. 3, pp. 437–443, 1989. View at Google Scholar · View at Scopus
  13. M. Franchi, A. Trirè, M. Quaranta, E. Orsini, and V. Ottani, “Collagen structure of tendon relates to function,” The Scientific World Journal, vol. 7, pp. 404–420, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. P. R. Manske and P. A. Lesker, “Flexor tendon nutrition,” Hand Clinics, vol. 1, no. 1, pp. 13–24, 1985. View at Google Scholar · View at Scopus
  15. F. Lam and D. Mok, “Open repair of massive rotator cuff tears in patients aged sixty-five years or over: is it worthwhile?” Journal of Shoulder and Elbow Surgery, vol. 13, no. 5, pp. 517–521, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Lorbach and M. Tompkins, “Rotator cuff: biology and current arthroscopic techniques,” Knee Surgery,Sports Traumatology,Arthroscopy. In press.
  17. J. Kellett, “Acute soft tissue injuries—a review of the literature,” Medicine and Science in Sports and Exercise, vol. 18, no. 5, pp. 489–500, 1986. View at Google Scholar · View at Scopus
  18. A. W. Wang and A. Gupta, “Early motion after flexor tendon surgery,” Hand Clinics, vol. 12, no. 1, pp. 43–55, 1996. View at Google Scholar · View at Scopus
  19. R. J. Khan, D. Fick, T. J. Brammar, J. Crawford, and M. J. Parker, “Interventions for treating acute Achilles tendon ruptures,” Cochrane Database of Systematic Reviews, no. 3, p. CD003674, 2004. View at Google Scholar · View at Scopus
  20. S. L. Woo, T. M. Vogrin, and S. D. Abramowitch, “Healing and repair of ligament injuries in the knee,” The Journal of the American Academy of Orthopaedic Surgeons, vol. 8, no. 6, pp. 364–372, 2000. View at Google Scholar · View at Scopus
  21. J. D. O'Holleran, M. S. Kocher, M. P. Horan, K. K. Briggs, and R. J. Hawkins, “Determinants of patient satisfaction with outcome after rotator cuff surgery,” Journal of Bone and Joint Surgery A, vol. 87, no. 1, pp. 121–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. W. Sperling, R. H. Cofield, and C. Schleck, “Rotator cuff repair in patients fifty years of age and younger,” Journal of Bone and Joint Surgery A, vol. 86, no. 10, pp. 2212–2215, 2004. View at Google Scholar · View at Scopus
  23. I. K. Y. Lo, A. Kirkley, B. Nonweiler, and D. A. Kumbhare, “Operative versus nonoperative treatment of acute achilles tendon ruptures: a quantitative review,” Clinical Journal of Sport Medicine, vol. 7, no. 3, pp. 207–211, 1997. View at Google Scholar · View at Scopus
  24. B. Huffard, P. F. O'Loughlin, T. Wright, J. Deland, and J. G. Kennedy, “Achilles tendon repair: achillon system vs. Krackow suture: an anatomic in vitro biomechanical study,” Clinical Biomechanics, vol. 23, no. 9, pp. 1158–1164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Henríquez, R. Muñoz, G. Carcuro, and C. Bastías, “Is percutaneous repair better than open repair in acute achilles tendon rupture?” Clinical Orthopaedics and Related Research, vol. 470, no. 4, pp. 998–1003, 2011. View at Google Scholar
  26. R. Maes, G. Copin, and C. Averous, “Is percutaneous repair of the Achilles tendon a safe technique? A study of 124 cases,” Acta Orthopaedica Belgica, vol. 72, no. 2, pp. 179–183, 2006. View at Google Scholar · View at Scopus
  27. A. Fujikawa, Y. Kyoto, M. Kawaguchi, Y. Naoi, and Y. Ukegawa, “Achilles tendon after percutaneous surgical repair: serial MRI observation of uncomplicated healing,” American Journal of Roentgenology, vol. 189, no. 5, pp. 1169–1174, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Filardo, M. L. Presti, E. Kon, and M. Marcacci, “Nonoperative biological treatment approach for partial achilles tendon lesion,” Orthopedics, vol. 33, no. 2, pp. 120–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. O. Mei-Dan, G. Lippi, M. Sánchez, I. Andia, and N. Maffulli, “Autologous platelet-rich plasma: a revolution in soft tissue sports injury management?” Physician and Sportsmedicine, vol. 38, no. 4, pp. 127–135, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. F. Owens, J. Ginnetti, S. F. Conti, and C. Latona, “Clinical and magnetic resonance imaging outcomes following platelet rich plasma injection for chronic midsubstance Achilles tendinopathy,” Foot and Ankle International, vol. 32, no. 11, pp. 1032–1039, 2011. View at Google Scholar
  31. R. J. de Vos, A. Weir, H. T. M. Van Schie et al., “Platelet-rich plasma injection for chronic Achilles tendinopathy: a randomized controlled trial,” Journal of the American Medical Association, vol. 303, no. 2, pp. 144–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. W. B. Leadbetter, P. A. Mooar, G. J. Lane, and S. J. Lee, “The surgical treatment of tendinitis: clinical rationale and biologic basis,” Clinics in Sports Medicine, vol. 11, no. 4, pp. 679–712, 1992. View at Google Scholar · View at Scopus
  33. C. P. Chiodo, M. Glazebrook, E. M. Bluman et al., “Diagnosis and treatment of acute achilles tendon rupture,” Journal of the American Academy of Orthopaedic Surgeons, vol. 18, no. 8, pp. 503–510, 2010. View at Google Scholar · View at Scopus
  34. N. G. Mohtadi, D. S. Chan, K. N. Dainty, and D. B. Whelan, “Patellar tendon versus hamstring tendon autograft for anterior cruciate ligament rupture in adults,” Cochrane Database of Systematic Reviews, vol. 9, Article ID CD005960, 2011. View at Google Scholar
  35. L. V. Gulotta, D. Kovacevic, J. R. Ehteshami, E. Dagher, J. D. Packer, and S. A. Rodeo, “Application of bone marrow-derived mesenchymal stem cells in a Rotator cuff repair model,” American Journal of Sports Medicine, vol. 37, no. 11, pp. 2126–2133, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Kjær, “Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading,” Physiological Reviews, vol. 84, no. 2, pp. 649–698, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. T. D. O'Brien, N. D. Reeves, V. Baltzopoulos, D. A. Jones, and C. N. Maganaris, “Mechanical properties of the patellar tendon in adults and children,” Journal of Biomechanics, vol. 43, no. 6, pp. 1190–1195, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Kassem, M. Kristiansen, and B. M. Abdallah, “Mesenchymal stem cells: cell biology and potential use in therapy,” Basic and Clinical Pharmacology and Toxicology, vol. 95, no. 5, pp. 209–214, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. H. A. Awad, D. L. Butler, G. P. Boivin et al., “Autologous mesenchymal stem cell-mediated repair of tendon,” Tissue Engineering, vol. 5, no. 3, pp. 267–277, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. A. K. S. Chong, J. Chang, and J. C. H. Go, “Mesenchymal stem cells and tendon healing,” Frontiers in Bioscience, vol. 14, no. 12, pp. 4598–4605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. D. L. Butler, C. Gooch, K. R. Kinneberg et al., “The use of mesenchymal stem cells in collagen-based scaffolds for tissue-engineered repair of tendons,” Nature Protocols, vol. 5, no. 5, pp. 849–863, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Yin, X. Chen, J. L. Chen, and H. W. Ouyang, “Stem cells for tendon tissue engineering and regeneration,” Expert Opinion on Biological Therapy, vol. 10, no. 5, pp. 689–700, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. E. A. Jones, S. E. Kinsey, A. English et al., “Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells,” Arthritis and Rheumatism, vol. 46, no. 12, pp. 3349–3360, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. I. Sekiya, B. L. Larson, J. R. Smith, R. Pochampally, J. G. Cui, and D. J. Prockop, “Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality,” Stem Cells, vol. 20, no. 6, pp. 530–541, 2002. View at Google Scholar · View at Scopus
  45. J. M. Ryan, F. P. Barry, J. M. Murphy, and B. P. Mahon, “Mesenchymal stem cells avoid allogeneic rejection,” Journal of Inflammation, vol. 2, p. 8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. W. T. Tse, J. D. Pendleton, W. M. Beyer, M. C. Egalka, and E. C. Guinan, “Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation,” Transplantation, vol. 75, no. 3, pp. 389–397, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Aggarwal and M. F. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. A. I. Caplan and J. E. Dennis, “Mesenchymal stem cells as trophic mediators,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1076–1084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. X. Long, M. Olszewski, W. Huang, and M. Kletzel, “Neural cell differentiation in vitro from adult human bone marrow mesenchymal stem cells,” Stem Cells and Development, vol. 14, no. 1, pp. 65–69, 2005. View at Google Scholar · View at Scopus
  51. C. J. Centeno, J. R. Schultz, M. Cheever, B. Robinson, M. Freeman, and W. Marasco, “Safety and complications reporting on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique,” Current Stem Cell Research and Therapy, vol. 5, no. 1, pp. 81–93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. Q. Tan, P. P. Lui, Y. F. Rui, and Y. M. Wong, “Comparison of potentials of stem cells isolated from tendon and bone marrow for musculoskeletal tissue engineering,” Tissue Engineering A, vol. 18, no. 7-8, pp. 840–851, 2012. View at Google Scholar
  53. A. Y. Zhang and J. Chang, “Tissue engineering of flexor tendons,” Clinics in Plastic Surgery, vol. 30, no. 4, pp. 565–572, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. A. I. Caplan, “The mesengenic process,” Clinics in Plastic Surgery, vol. 21, no. 3, pp. 429–435, 1994. View at Google Scholar · View at Scopus
  55. G. S. Kryger, A. K. S. Chong, M. Costa, H. Pham, S. J. Bates, and J. Chang, “A comparison of tenocytes and mesenchymal stem cells for use in flexor tendon tissue engineering,” Journal of Hand Surgery, vol. 32, no. 5, pp. 597–605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. Z. Ge, J. C. H. Goh, and E. H. Lee, “Selection of cell source for ligament tissue engineering,” Cell Transplantation, vol. 14, no. 8, pp. 573–583, 2005. View at Google Scholar · View at Scopus
  57. Y. Cao, Y. Liu, W. Liu, Q. Shan, S. D. Buonocore, and L. Cui, “Bridging tendon defects using autologous tenocyte engineered tendon in a hen model,” Plastic and Reconstructive Surgery, vol. 110, no. 5, pp. 1280–1289, 2002. View at Google Scholar · View at Scopus
  58. H. W. Ouyang, J. C. H. Goh, X. M. Mo, S. H. Teoh, and E. H. Lee, “The efficacy of bone marrow stromal cell-seeded knitted PLGA fiber scaffold for Achilles tendon repair,” Annals of the New York Academy of Sciences, vol. 961, pp. 126–129, 2002. View at Google Scholar · View at Scopus
  59. R. G. Young, D. L. Butler, W. Weber, A. I. Caplan, S. L. Gordon, and D. J. Fink, “Use of mesenchymal stem cells in a collagen matrix for achilles tendon repair,” Journal of Orthopaedic Research, vol. 16, no. 4, pp. 406–413, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. C. K. Kuo and R. S. Tuan, “Mechanoactive tenogenic differentiation of human mesenchymal stem cells,” Tissue Engineering A, vol. 14, no. 10, pp. 1615–1627, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Mishra, P. Tummala, A. King et al., “Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation,” Tissue engineering C, vol. 15, no. 3, pp. 431–435, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. J. Zhang and J. H. C. Wang, “Platelet-rich plasma releasate promotes differentiation of tendon stem cells into active tenocytes,” American Journal of Sports Medicine, vol. 38, no. 12, pp. 2477–2486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Hofmann, S. Knecht, R. Langer et al., “Cartilage-like tissue engineering using silk scaffolds and mesenchymal stem cells,” Tissue Engineering, vol. 12, no. 10, pp. 2729–2738, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Zoldan, E. D. Karagiannis, C. Y. Lee, D. G. Anderson, R. Langer, and S. Levenberg, “The influence of scaffold elasticity on germ layer specification of human embryonic stem cells,” Biomaterials, vol. 32, no. 36, pp. 9612–9621, 2011. View at Google Scholar
  65. S. Levenberg, N. F. Huang, E. Lavik, A. B. Rogers, J. Itskovitz-Eldor, and R. Langer, “Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 22, pp. 12741–12746, 2003. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Meinel, V. Karageorgiou, R. Fajardo et al., “Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow,” Annals of Biomedical Engineering, vol. 32, no. 1, pp. 112–122, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. S. F. Badylak, R. Record, K. Lindberg, J. Hodde, and K. Park, “Small intestinal submucosa: a substrate for in vitro cell growth,” Journal of Biomaterials Science, Polymer Edition, vol. 9, no. 8, pp. 863–878, 1998. View at Google Scholar · View at Scopus
  68. R. A. Santucci and T. D. Barber, “Resorbable extra cellular matrix grafts in urologic reconstruction,” International Braz J Urol, vol. 31, no. 3, pp. 192–203, 2005. View at Google Scholar · View at Scopus
  69. V. Kishore, W. Bullock, X. Sun, W. S. van Dyke, and O. Akkus, “Tenogenic differentiation of human MSCs induced by the topography of electrochemically aligned collagen threads,” Biomaterials, vol. 33, no. 7, pp. 2137–2144, 2012. View at Google Scholar
  70. D. L. Butler, N. Juncosa-Melvin, G. P. Boivin et al., “Functional tissue engineering for tendon repair: a multidisciplinary strategy using mesenchymal stem cells, bioscaffolds, and mechanical stimulation,” Journal of Orthopaedic Research, vol. 26, no. 1, pp. 1–9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. H. A. Awad, G. P. Boivin, M. R. Dressler, F. N. L. Smith, R. G. Young, and D. L. Butler, “Repair of patellar tendon injuries using a cell-collagen composite,” Journal of Orthopaedic Research, vol. 21, no. 3, pp. 420–431, 2003. View at Publisher · View at Google Scholar · View at Scopus
  72. A. R. Webb, V. A. Kumar, and G. A. Ameer, “Biodegradable poly(diol citrate) nanocomposite elastomers for soft tissue engineering,” Journal of Materials Chemistry, vol. 17, no. 9, pp. 900–906, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. A. K. Sharma, P. V. Hota, D. J. Matoka et al., “Urinary bladder smooth muscle regeneration utilizing bone marrow derived mesenchymal stem cell seeded elastomeric poly(1,8-octanediol-co-citrate) based thin films,” Biomaterials, vol. 31, no. 24, pp. 6207–6217, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Vaquette, S. Slimani, C. J. F. Kahn, N. Tran, R. Rahouadj, and X. Wang, “A poly(lactic-co-glycolic acid) knitted scaffold for tendon tissue engineering: an in vitro and in vivo study,” Journal of Biomaterials Science, Polymer Edition, vol. 21, no. 13, pp. 1737–1760, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. A. K. Sharma, M. I. Bury, N. J. Fuller et al., “Growth factor release from a chemically modified elastomeric poly(1,8-octanediol-co-citrate) thin film promotes angiogenesis in vivo,” Journal of Biomedical Materials Research A, vol. 100, no. 3, pp. 561–570, 2012. View at Publisher · View at Google Scholar
  76. J. Yang, A. R. Webb, S. J. Pickerill, G. Hageman, and G. A. Ameer, “Synthesis and evaluation of poly(diol citrate) biodegradable elastomers,” Biomaterials, vol. 27, no. 9, pp. 1889–1898, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. J. E. Valentin, J. S. Badylak, G. P. McCabe, and S. F. Badylak, “Extracellular matrix bioscaffolds for orthopaedic applications: a comparative histologic study,” Journal of Bone and Joint Surgery A, vol. 88, no. 12, pp. 2673–2686, 2006. View at Publisher · View at Google Scholar · View at Scopus
  78. U. G. Longo, A. Lamberti, S. Petrillo, N. Maffulli, and V. Denaro, “Scaffolds in tendon tissue engineering,” Stem Cells International, vol. 2012, Article ID 517165, 12 pages, 2012. View at Publisher · View at Google Scholar
  79. R. A. Magnussen, R. R. Glisson, and C. T. Moorman, “Augmentation of achilles tendon repair with extracellular matrix xenograft: a biomechanical analysis,” American Journal of Sports Medicine, vol. 39, no. 7, pp. 1522–1527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Behravesh, A. W. Yasko, P. S. Engel, and A. G. Mikos, “Synthetic biodegradable polymers for orthopaedic applications,” Clinical Orthopaedics and Related Research, no. 367, pp. S118–S125, 1999. View at Google Scholar · View at Scopus
  81. V. Guarino, F. Causa, and L. Ambrosio, “Bioactive scaffolds for bone and ligament tissue,” Expert Review of Medical Devices, vol. 4, no. 3, pp. 405–418, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. Z. Ge, F. Yang, J. C. H. Goh, S. Ramakrishna, and E. H. Lee, “Biomaterials and scaffolds for ligament tissue engineering,” Journal of Biomedical Materials Research A, vol. 77, no. 3, pp. 639–652, 2006. View at Publisher · View at Google Scholar · View at Scopus
  83. C. T. Laurencin and J. W. Freeman, “Ligament tissue engineering: an evolutionary materials science approach,” Biomaterials, vol. 26, no. 36, pp. 7530–7536, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. K. L. Moffat, A. S. P. Kwei, J. P. Spalazzi, S. B. Doty, W. N. Levine, and H. H. Lu, “Novel nanofiber-based scaffold for rotator cuff repair and augmentation,” Tissue Engineering A, vol. 15, no. 1, pp. 115–126, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. J. B. Matson, R. H. Zha, and S. I. Stupp, “Peptide self-assembly for crafting functional biological materials,” Current Opinion in Solid State and Materials Science, vol. 15, no. 6, pp. 225–235, 2011. View at Publisher · View at Google Scholar
  86. A. Mata, Y. Geng, K. J. Henrikson et al., “Bone regeneration mediated by biomimetic mineralization of a nanofiber matrix,” Biomaterials, vol. 31, no. 23, pp. 6004–6012, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. A. G. Mikos, S. W. Herring, P. Ochareon et al., “Engineering complex tissues,” Tissue Engineering, vol. 12, no. 12, pp. 3307–3339, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. Y. J. Ju, T. Muneta, H. Yoshimura, H. Koga, and I. Sekiya, “Synovial mesenchymal stem cells accelerate early remodeling of tendon-bone healing,” Cell and Tissue Research, vol. 332, no. 3, pp. 469–478, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. J. P. Spalazzi, S. B. Doty, K. L. Moffat, W. N. Levine, and H. H. Lu, “Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering,” Tissue Engineering, vol. 12, no. 12, pp. 3497–3508, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. S. A. Fenwick, B. L. Hazleman, and G. P. Riley, “The vasculature and its role in the damaged and healing tendon,” Arthritis Research, vol. 4, no. 4, pp. 252–260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. E. E. Peacock, “A study of the circulation in normal tendons and healing grafts,” Annals of Surgery, vol. 149, no. 3, pp. 415–428, 1959. View at Google Scholar · View at Scopus
  92. M. V. Hogan, N. Bagayoko, R. James, T. Starnes, A. Katz, and A. B. Chhabra, “Tissue engineering solutions for tendon repair,” Journal of the American Academy of Orthopaedic Surgeons, vol. 19, no. 3, pp. 134–142, 2011. View at Google Scholar · View at Scopus
  93. M. Kanitkar, H. D. Tailor, and W. S. Khan, “The use of growth factors and mesenchymal stem cells in orthopaedics,” The Open Orthopaedics Journal, vol. 5, supplement 2, pp. 271–275, 2011. View at Google Scholar
  94. M. A. Akhavani, B. Sivakumar, E. M. Paleolog, and N. Kang, “Angiogenesis and plastic surgery,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 61, no. 12, pp. 1425–1437, 2008. View at Google Scholar
  95. T. Sakai, K. Yasuda, H. Tohyama et al., “Effects of combined administration of transforming growth factor-beta1 and epidermal growth factor on properties of the in situ frozen anterior cruciate ligament in rabbits,” Journal of Orthopaedic Research, vol. 20, no. 6, pp. 1345–1351, 2002. View at Publisher · View at Google Scholar · View at Scopus
  96. B. A. Pryce, S. S. Watson, N. D. Murchison, J. A. Staverosky, N. Dünker, and R. Schweitzer, “Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation,” Development, vol. 136, no. 8, pp. 1351–1361, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. U. G. Longo, A. Lamberti, N. Maffulli, and V. Denaro, “Tissue engineered biological augmentation for tendon healing: a systematic review,” British Medical Bulletin, vol. 98, no. 1, pp. 31–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. T. A. Mustoe, G. F. Pierce, A. Thomason, P. Gramates, M. B. Sporn, and T. F. Deuel, “Accelerated healing of incisional wounds in rats induced by transforming growth factor-beta,” Science, vol. 237, no. 4820, pp. 1333–1336, 1987. View at Google Scholar
  99. G. L. Brown, L. J. Curtsinger, M. White et al., “Acceleration of tensile strength of incisions treated with EGF and TGF-beta,” Annals of Surgery, vol. 208, no. 6, pp. 788–794, 1988. View at Google Scholar · View at Scopus
  100. G. F. Pierce, T. A. Mustoe, J. Lingelbach et al., “Platelet-derived growth factor and transforming growth factor-beta enhance tissue repair activities by unique mechanisms,” Journal of Cell Biology, vol. 109, no. 1, pp. 429–440, 1989. View at Google Scholar · View at Scopus
  101. T. F. Deuel, R. S. Kawahara, T. A. Mustoe, and G. F. Pierce, “Growth factors and wound healing: platelet-derived growth factor as a model cytokine,” Annual Review of Medicine, vol. 42, pp. 567–584, 1991. View at Google Scholar · View at Scopus
  102. A. J. Cowin, N. Kallincos, N. Hatzirodos et al., “Hepatocyte growth factor and macrophage-stimulating protein are upregulated during excisional wound repair in rats,” Cell and Tissue Research, vol. 306, no. 2, pp. 239–250, 2001. View at Publisher · View at Google Scholar · View at Scopus
  103. K. C. Rustad, V. W. Wong, M. Sorkin et al., “Enhancement of mesenchymal stem cell angiogenic capacity and stemness by a biomimetic hydrogel scaffold,” Biomaterials, vol. 33, no. 1, pp. 80–90, 2012. View at Google Scholar
  104. M. Toyoda, H. Takayama, N. Horiguchi et al., “Overexpression of hepatocyte growth factor/scatter factor promotes vascularization and granulation tissue formation in vivo,” FEBS Letters, vol. 509, no. 1, pp. 95–100, 2001. View at Publisher · View at Google Scholar · View at Scopus
  105. F. P. Luyten, “Cartilage-derived morphogenetic protein-1,” International Journal of Biochemistry and Cell Biology, vol. 29, no. 11, pp. 1241–1244, 1997. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Bryant, G. M. Drew, P. Houston, P. Hissey, C. J. Campbell, and M. Braddock, “Tissue repair with a therapeutic transcription factor,” Human Gene Therapy, vol. 11, no. 15, pp. 2143–2158, 2000. View at Publisher · View at Google Scholar · View at Scopus
  107. S. S. Raghavan, C. Y. Woon, A. Kraus, K. Megerle, H. Pham, and J. Chang, “Optimization of human tendon tissue engineering: synergistic effects of growth factors for use in tendon scaffold repopulation,” Plastic and Reconstructive Surgery, vol. 129, no. 2, pp. 479–489, 2012. View at Google Scholar
  108. P. J. Taub, J. D. Marmur, W. X. Zhang et al., “Locally administered vascular endothelial growth factor cDNA increases survival of ischemic experimental skin flaps,” Plastic and Reconstructive Surgery, vol. 102, no. 6, pp. 2033–2039, 1998. View at Google Scholar
  109. J. Yang, M. Ii, N. Kamei et al., “CD34+ cells represent highly functional endothelial progenitor cells in murine bone marrow,” PLoS One, vol. 6, no. 5, Article ID e20219, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. T. Asahara and J. M. Isner, “Endothelial progenitor cells for vascular regeneration,” Journal of Hematotherapy and Stem Cell Research, vol. 11, no. 2, pp. 171–178, 2002. View at Publisher · View at Google Scholar · View at Scopus
  111. A. H. Yin, S. Miraglia, E. D. Zanjani et al., “AC133, a novel marker for human hematopoietic stem and progenitor cells,” Blood, vol. 90, no. 12, pp. 5002–5012, 1997. View at Google Scholar · View at Scopus
  112. C. M. Ghajar, K. S. Blevins, C. C. W. Hughes, S. C. George, and A. J. Putnam, “Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation,” Tissue Engineering, vol. 12, no. 10, pp. 2875–2888, 2006. View at Publisher · View at Google Scholar · View at Scopus
  113. M. J. Silva, M. I. Boyer, and R. H. Gelberman, “Recent progress in flexor tendon healing,” Journal of Orthopaedic Science, vol. 7, no. 4, pp. 508–514, 2002. View at Publisher · View at Google Scholar · View at Scopus
  114. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  115. H. J. Büuhring, V. L. Battula, S. Treml, B. Schewe, L. Kanz, and W. Vogel, “Novel markers for the prospective isolation of human MSC,” Annals of the New York Academy of Sciences, vol. 1106, pp. 262–271, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. B. Mazzanti, A. Aldinucci, T. Biagioli et al., “Differences in mesenchymal stem cell cytokine profiles between MS patients and healthy donors: implication for assessment of disease activity and treatment,” Journal of Neuroimmunology, vol. 199, no. 1-2, pp. 142–150, 2008. View at Publisher · View at Google Scholar · View at Scopus
  117. P. P. Y. Lui and K. M. Chan, “Tendon-derived stem cells (TDSCs): from basic science to potential roles in tendon pathology and tissue engineering applications,” Stem Cell Reviews and Reports, vol. 7, pp. 887–897, 2011. View at Google Scholar · View at Scopus
  118. Y. Bi, D. Ehirchiou, T. M. Kilts et al., “Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche,” Nature Medicine, vol. 13, no. 10, pp. 1219–1227, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. D. L. Butler, E. S. Grood, F. R. Noyes, R. F. Zernicke, and K. Brackett, “Effects of structure and strain measurement technique on the material properties of young human tendons and fascia,” Journal of Biomechanics, vol. 17, no. 8, pp. 579–596, 1984. View at Google Scholar
  120. P. Hansen, J. Bojsen-Moller, P. Aagaard, M. Kjaer, and S. P. Magnusson, “Mechanical properties of the human patellar tendon, in vivo,” Clinical Biomechanics, vol. 21, no. 1, pp. 54–58, 2006. View at Google Scholar
  121. D. L. Butler, M. D. Kay, and D. C. Stouffer, “Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments,” Journal of Biomechanics, vol. 19, no. 6, pp. 425–432, 1986. View at Google Scholar · View at Scopus
  122. C. N. Maganaris and J. P. Paul, “In vivo human tendon mechanical properties,” Journal of Physiology, vol. 521, pp. 307–313, 1999. View at Google Scholar · View at Scopus
  123. A. Halder, M. E. Zobitz, F. Schultz, and K. N. An, “Mechanical properties of the posterior rotator cuff,” Clinical Biomechanics, vol. 15, no. 6, pp. 456–462, 2000. View at Google Scholar
  124. C. N. Maganaris and J. P. Paul, “Tensile properties of the in vivo human gastrocnemius tendon,” Journal of Biomechanics, vol. 35, no. 12, pp. 1639–1646, 2002. View at Publisher · View at Google Scholar · View at Scopus