Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2012, Article ID 685901, 12 pages
Research Article

Assessment of Hereditary Retinal Degeneration in the English Springer Spaniel Dog and Disease Relationship to an RPGRIP1 Mutation

1Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
2Department of Ophthalmology, Mason Eye Institute, University of Missouri, Columbia, MO 65211, USA
3Department of Veterinary Medicine and Surgery, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul National University, Seoul 151-742, Republic of Korea
4Eye Care For Animals, VA, 20176-3367, USA
5Biostatistics, School of Medicine, University of Missouri, Columbia, MO 65211, USA
6Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden

Received 12 September 2011; Revised 9 November 2011; Accepted 15 November 2011

Academic Editor: Henry J. Klassen

Copyright © 2012 Kristina Narfström et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Intensive breeding and selection on desired traits have produced high rates of inherited diseases in dogs. Hereditary retinal degeneration, often called progressive retinal atrophy (PRA), is prevalent in dogs with disease entities comparable to human retinitis pigmentosa (RP) and Leber’s congenital amaurosis (LCA). Recent molecular studies in the English Springer Spaniel (ESS) dog have shown that PRA cases are often homozygous for a mutation in the RPGRIP1 gene, the defect also causing human RP, LCA, and cone rod dystrophies. The present study characterizes the disease in a group of affected ESS in USA, using clinical, functional, and morphological studies. An objective evaluation of retinal function using electroretinography (ERG) is further performed in a masked fashion in a group of American ESS dogs, with the examiner masked to the genetic status of the dogs. Only 4 of 6 homozygous animals showed clinical signs of disease, emphasizing the need and importance for more precise studies on the clinical expression of molecular defects before utilizing animal models for translational research, such as when using stem cells for therapeutic intervention.