Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2013, Article ID 582527, 9 pages
http://dx.doi.org/10.1155/2013/582527
Clinical Study

Intracoronary Infusion of Autologous CD133+ Cells in Myocardial Infarction and Tracing by Tc99m MIBI Scintigraphy of the Heart Areas Involved in Cell Homing

1Avicenna Tajik State Medical University, Dushanbe, Tajikistan
2Institute of Gastroenterology, 734003 Dushanbe, Tajikistan
3Tajikistan Ministry of Health, 734003 Dushanbe, Tajikistan
4UMRS 872, CRC-INSERM, Université Pierre et Marie Curie, Paris-VI, Université Paris Descartes, Paris-V, 15 rue de l’Ecole de Médecine, 75006 Paris, France

Received 11 January 2013; Revised 11 March 2013; Accepted 14 March 2013

Academic Editor: Weian Zhao

Copyright © 2013 Ubaidullo Kurbonov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. J. Wagers and I. M. Conboy, “Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis,” Cell, vol. 122, no. 5, pp. 659–667, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. X. Shi and D. J. Garry, “Muscle stem cells in development, regeneration, and disease,” Genes and Development, vol. 20, no. 13, pp. 1692–1708, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Leri, J. Kajstura, and P. Anversa, “Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology,” Circulation Research, vol. 109, no. 8, pp. 941–961, 2011. View at Publisher · View at Google Scholar
  4. A. Abdel-Latif, R. Bolli, I. M. Tleyjeh et al., “Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis,” Archives of Internal Medicine, vol. 167, no. 10, pp. 989–997, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Hoover-Plow and Y. Gong, “Challenges for heart disease stem cell therapy,” Journal of Vascular Health and Risk Management, vol. 8, pp. 99–113, 2012. View at Publisher · View at Google Scholar
  6. V. F. Segers and R. T. Lee, “Stem-cell therapy for cardiac disease,” Nature, vol. 451, no. 7181, pp. 937–942, 2008. View at Publisher · View at Google Scholar
  7. A. Aicher, C. Heeschen, K. I. Sasaki, C. Urbich, A. M. Zeiher, and S. Dimmeler, “Low-energy shock wave for enhancing recruitment of endothelial progenitor cells: a new modality to increase efficacy of cell therapy in chronic hind limb ischemia,” Circulation, vol. 114, no. 25, pp. 2823–2830, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Hofmann, K. C. Wollert, G. P. Meyer et al., “Monitoring of bone marrow cell homing into the infarcted human myocardium,” Circulation, vol. 111, no. 17, pp. 2198–2202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Liao, O. Pfister, M. Jain, and F. Mouquet, “The bone marrow—cardiac axis of myocardial regeneration,” Progress in Cardiovascular Diseases, vol. 50, no. 1, pp. 18–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Thiele, E. Varus, C. Wickenhauser et al., “Mixed chimerism of cardiomyocytes and vessels after allogeneic bone marrow and stem-cell transplantation in comparison with cardiac allografts,” Transplantation, vol. 77, no. 12, pp. 1902–1905, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. O. Agbulut, S. Vandervelde, N. Al Attar et al., “Comparison of human skeletal myoblasts and bone marrow-derived CD133+ progenitors for the repair of infarcted myocardium,” Journal of the American College of Cardiology, vol. 44, no. 2, pp. 458–463, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. D. A. Taylor, B. Z. Atkins, P. Hungspreugs et al., “Regenerating functional myocardium: improved performance after skeletal myoblast transplantation,” Nature Medicine, vol. 4, no. 8, pp. 929–933, 1998, Erratum in Nature Medicine, vol. 4, no. 10, pp. 1200, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Stamm, B. Westphal, H. D. Kleine et al., “Autologous bone-marrow stem-cell transplantation for myocardial regeneration,” The Lancet, vol. 361, no. 9351, pp. 45–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. S. L. M. A. Beeres, F. M. Bengel, J. Bartunek et al., “Role of imaging in cardiac stem cell therapy,” Journal of the American College of Cardiology, vol. 49, no. 11, pp. 1137–1148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Tondreau, N. Meuleman, A. Delforge et al., “Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity,” Stem Cells, vol. 23, no. 8, pp. 1105–1112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Jougasaki, “Cardiotrophin-1 in cardiovascular regulation,” Advances in Clinical Chemistry, vol. 52, pp. 41–76, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Lohela, M. Bry, T. Tammela, and K. Alitalo, “VEGFs and receptors involved in angiogenesis versus lymphangiogenesis,” Current Opinion in Cell Biology, vol. 21, no. 2, pp. 154–165, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. K. J. Wilson, C. Mill, S. Lambert et al., “EGFR ligands exhibit functional differences in models of paracrine and autocrine signaling,” Growth Factors, vol. 30, no. 2, pp. 107–116, 2012. View at Publisher · View at Google Scholar
  19. H. Park and M. M. Poo, “Neurotrophin regulation of neural circuit development and function,” Nature Reviews Neuroscience, vol. 14, no. 1, pp. 7–23, 2012. View at Publisher · View at Google Scholar
  20. B. van Wijk, A. F. M. Moorman, and M. J. B. van den Hoff, “Role of bone morphogenetic proteins in cardiac differentiation,” Cardiovascular Research, vol. 74, no. 2, pp. 244–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Wan and X. Cao, “BMP signaling in skeletal development,” Biochemical and Biophysical Research Communications, vol. 328, no. 3, pp. 651–657, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Sun, T. Fei, T. Yang et al., “The suppression of CRMP2 expression by Bone Morphogenetic Protein (BMP)-SMAD gradient signaling controls multiple stages of neuronal development,” The Journal of Biological Chemistry, vol. 285, no. 50, pp. 39039–39050, 2010. View at Publisher · View at Google Scholar · View at Scopus