Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2015 (2015), Article ID 153627, 2 pages
http://dx.doi.org/10.1155/2015/153627
Editorial

Stem Cells and Cardiac Repair

1Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
2Laboratory of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy
3Center for Translational Medicine, Temple School of Medicine, Temple University, Philadelphia, PA 19140, USA

Received 12 April 2015; Accepted 12 April 2015

Copyright © 2015 Sadia Mohsin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Assmus, V. Schächinger, C. Teupe et al., “Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI),” Circulation, vol. 106, no. 24, pp. 3009–3017, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Orlic, J. Kajstura, S. Chimenti et al., “Mobilized bone marrow cells repair the infarcted heart, improving function and survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10344–10349, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. H. C. Quevedo, K. E. Hatzistergos, B. N. Oskouei et al., “Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 33, pp. 14022–14027, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. N. N. Hoke, F. N. Salloum, D. A. Kass, A. Das, and R. C. Kukreja, “Preconditioning by phosphodiesterase-5 inhibition improves therapeutic efficacy of adipose-derived stem cells following myocardial infarction in mice,” Stem Cells, vol. 30, no. 2, pp. 326–335, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. J. M. Duran, C. A. Makarewich, T. E. Sharp et al., “Bone-Derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms,” Circulation Research, vol. 113, no. 5, pp. 539–552, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Masuda, R. Tanaka, S. Fujimura et al., “Vasculogenic conditioning of peripheral blood mononuclear cells promotes endothelial progenitor cell expansion and phenotype transition of anti-inflammatory macrophage and t lymphocyte to cells with regenerative potential,” Journal of the American Heart Association, vol. 3, Article ID e000743, 2014. View at Publisher · View at Google Scholar
  8. D. W. Losordo, R. A. Schatz, C. J. White et al., “Intramyocardial transplantation of autologous CD34+ stem cells for intractable angina: a phase I/IIa double-blind, randomized controlled trial,” Circulation, vol. 115, no. 25, pp. 3165–3172, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Sahoo, E. Klychko, T. Thorne et al., “Exosomes from human CD34+ stem cells mediate their proangiogenic paracrine activity,” Circulation Research, vol. 109, no. 7, pp. 724–728, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. G.-E. Ibrahim, K. Cheng, and E. Marbán, “Exosomes as critical agents of cardiac regeneration triggered by cell therapy,” Stem Cell Reports, vol. 2, no. 5, pp. 606–619, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Arslan, R. C. Lai, M. B. Smeets et al., “Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury,” Stem Cell Research, vol. 10, no. 3, pp. 301–312, 2013. View at Publisher · View at Google Scholar · View at Scopus