Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2015, Article ID 734731, 19 pages
http://dx.doi.org/10.1155/2015/734731
Review Article

Stem Cells and Regenerative Medicine: Myth or Reality of the 21th Century

1CNRS, UMR 7365, Lorraine University, 54500 Vandoeuvre, France
2Nancy Hospital (CHU), Cell and Tissue Therapy Unit (UTCT), 54500 Vandoeuvre, France
3Lorraine University, 54000 Nancy, France
4Medical College and Zhongnan Hospital, Wuhan University, Wuhan, China
5Service de Thérapie Cellulaire, Calmette Hospital, Kunming, China
6Medical School, Wuhan University, Wuhan, Hubei, China
7Anzhen Hospital, Cardiovascular and Lung Research Center, Beijing, China

Received 26 December 2014; Revised 22 April 2015; Accepted 24 May 2015

Academic Editor: Juan Carlos Casar

Copyright © 2015 J.-F. Stoltz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Islam, “Haemopoietic stem cell: a new concept,” Leukemia Research, vol. 9, no. 11, pp. 1415–1432, 1985. View at Google Scholar · View at Scopus
  2. M. Tavassoli and A. Friedenstein, “Hemopoietic stromal microenvironment,” The American Journal of Hematology, vol. 15, no. 2, pp. 195–203, 1983. View at Publisher · View at Google Scholar · View at Scopus
  3. E. D. Thomas, H. L. Lochte Jr., J. H. Cannon, O. D. Sahler, and J. W. Ferrebee, “Supralethal whole body irradiation and isologous marrow transplantation in man,” The Journal of Clinical Investigation, vol. 38, pp. 1709–1716, 1959. View at Publisher · View at Google Scholar · View at Scopus
  4. R. A. Gatti, H. J. Meuwissen, H. D. Allen, R. Hong, and R. A. Good, “Immunological reconstitution of sex-linked lymphopenic immunological deficiency,” The Lancet, vol. 2, no. 7583, pp. 1366–1369, 1968. View at Google Scholar · View at Scopus
  5. E. D. Thomas, “A history of haemopoietic cell transplantation,” British Journal of Haematology, vol. 105, no. 2, pp. 330–339, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Evans and M. H. Kaufman, “Establishment in culture of pluripotential cells from mouse embryos,” Nature, vol. 292, no. 5819, pp. 154–156, 1981. View at Publisher · View at Google Scholar · View at Scopus
  7. G. R. Martin, “Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 12, pp. 7634–7638, 1981. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Galende, I. Karakikes, L. Edelmann et al., “Amniotic fluid cells are more efficiently reprogrammed to pluripotency than adult cells,” Cellular Reprogramming, vol. 12, no. 2, pp. 117–125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Magnon, D. Lucas, and P. Frenette, “Trafficking of stem cells,” in Stem Cell Migration: Methods and Protocols, vol. 750 of Methods in Molecular Biology, pp. 3–24, Humana Press, New York, NY, USA, 2011. View at Publisher · View at Google Scholar
  12. T. Zhao, Z.-N. Zhang, Z. Rong, and Y. Xu, “Immunogenicity of induced pluripotent stem cells,” Nature, vol. 474, no. 7350, pp. 212–215, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Campagnoli, I. A. G. Roberts, S. Kumar, P. R. Bennett, I. Bellantuono, and N. M. Fisk, “Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow,” Blood, vol. 98, no. 8, pp. 2396–2402, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Dexheimer, S. Mueller, F. Braatz, and W. Richter, “Reduced reactivation from dormancy but maintained lineage choice of human mesenchymal stem cells with donor age,” PLoS ONE, vol. 6, no. 8, Article ID e22980, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Fukuchi, H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura, and K. Tsuji, “Human placenta-derived cells have mesenchymal stem/progenitor cell potential,” Stem Cells, vol. 22, no. 5, pp. 649–658, 2004. View at Google Scholar · View at Scopus
  16. C. A. Roufosse, N. C. Direkze, W. R. Otto, and N. A. Wright, “Circulating mesenchymal stem cells,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 4, pp. 585–597, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Suva, G. Garavaglia, J. Menetrey et al., “Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells,” Journal of Cellular Physiology, vol. 198, no. 1, pp. 110–118, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Wagner, F. Wein, A. Seckinger et al., “Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood,” Experimental Hematology, vol. 33, no. 11, pp. 1402–1416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. H.-S. Wang, S.-C. Hung, S.-T. Peng et al., “Mesenchymal stem cells in the Wharton's jelly of the human umbilical cord,” Stem Cells, vol. 22, no. 7, pp. 1330–1337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. B. L. Yen, H.-I. Huang, C.-C. Chien et al., “Isolation of multipotent cells from human term placenta,” Stem Cells, vol. 23, no. 1, pp. 3–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Yu, X. Wu, M. A. Dietrich et al., “Yield and characterization of subcutaneous human adipose-derived stem cells by flow cytometric and adipogenic mRNA analyzes,” Cytotherapy, vol. 12, no. 4, pp. 538–546, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. B. M. Abdallah and M. Kassem, “Human mesenchymal stem cells: from basic biology to clinical applications,” Gene Therapy, vol. 15, no. 2, pp. 109–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Aggarwal and M. F. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. N. A. Kia, A. R. Bahrami, M. Ebrahimi et al., “Comparative analysis of chemokine receptor's expression in mesenchymal stem cells derived from human bone marrow and adipose tissue,” Journal of Molecular Neuroscience, vol. 44, no. 3, pp. 178–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Can and S. Karahuseyinoglu, “Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells,” Stem Cells, vol. 25, no. 11, pp. 2886–2895, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells: the international society for cellular therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. J. A. Efe, S. Hilcove, J. Kim et al., “Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy,” Nature Cell Biology, vol. 13, no. 3, pp. 215–222, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Mojallal, C. Lequeux, C. Shipkov et al., “Influence of age and body mass index on the yield and proliferation capacity of Adipose-derived stem cells,” Aesthetic Plastic Surgery, vol. 35, no. 6, pp. 1097–1105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. L. V. Rodríguez, Z. Alfonso, R. Zhang, J. Leung, B. Wu, and L. J. Ignarro, “Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 32, pp. 12167–12172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Sarugaser, D. Lickorish, D. Baksh, M. M. Hosseini, and J. E. Davies, “Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors,” Stem Cells, vol. 23, no. 2, pp. 220–229, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. J.-W. Yang, N. de Isla, C. Huselstein et al., “Evaluation of human MSCs cell cycle, viability and differentiation in micromass culture,” Biorheology, vol. 43, no. 3-4, pp. 489–496, 2006. View at Google Scholar · View at Scopus
  32. M. Malinowski, K. Pietraszek, C. Perreau et al., “Effect of lumican on the migration of human mesenchymal stem cells and endothelial progenitor cells: involvement of matrix metalloproteinase,” PLoS ONE, vol. 7, no. 12, Article ID e50709, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Oswald, S. Boxberger, B. Jørgensen et al., “Mesenchymal stem cells can be differentiated into endothelial cells in vitro,” Stem Cells, vol. 22, no. 3, pp. 377–384, 2004. View at Google Scholar · View at Scopus
  34. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. V. Planat-Benard, J.-S. Silvestre, B. Cousin et al., “Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives,” Circulation, vol. 109, no. 5, pp. 656–663, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. N. Salmon, E. Paternotte, V. Decot, J.-F. Stoltz, P. Menu, and P. Labrude, “Polyelectrolyte multilayer films promote human cord blood stem cells differentiation into mature endothelial cells exhibiting a stable phenotype,” Bio-Medical Materials and Engineering, vol. 19, no. 4-5, pp. 349–354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Allameh, H. Ahmadi-Ashtiani, M. S. Emami Aleagha, and H. Rastegar, “The metabolic function of hepatocytes differentiated from human mesenchymal stem cells is inversely related to cellular glutathione levels,” Cell Biochemistry and Function, vol. 32, no. 2, pp. 194–200, 2014. View at Publisher · View at Google Scholar
  38. L. Zhang, Y.-H. Zhao, Z. Guan, J.-S. Ye, N. de Isla, and J.-F. Stoltz, “Application potential of mesenchymal stem cells derived from Wharton's jelly in liver tissue engineering,” Bio-Medical Materials and Engineering, vol. 25, no. 1, supplement, pp. 137–143, 2015. View at Publisher · View at Google Scholar
  39. J.-S. Ye, X.-S. Su, J.-F. Stoltz, N. de Isla, and L. Zhang, “Signalling pathways involved in the process of mesenchymal stem cells differentiating into hepatocytes,” Cell Proliferation, vol. 48, no. 2, pp. 157–165, 2015. View at Publisher · View at Google Scholar
  40. N. Feng, Q. Han, J. Li et al., “Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation,” Stem Cells and Development, vol. 23, no. 5, pp. 515–529, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. M. M. Martini, T. D. S. Jeremias, M. C. Kohler, L. L. Marostica, A. G. Trentin, and M. Alvarez-Silva, “Human placenta-derived mesenchymal stem cells acquire neural phenotype under the appropriate niche conditions,” DNA and Cell Biology, vol. 32, no. 2, pp. 58–65, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Ma, L. Fox, G. Shi et al., “Generation of neural stem cell-like cells from bone marrow-derived human mesenchymal stem cells,” Neurological Research, vol. 33, no. 10, pp. 1083–1093, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Chamberlain, J. Fox, B. Ashton, and J. Middleton, “Concise review: Mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing,” Stem Cells, vol. 25, no. 11, pp. 2739–2749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. K. Chen, D. Wang, W. T. Du et al., “Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism,” Clinical Immunology, vol. 135, no. 3, pp. 448–458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Corcione, F. Benvenuto, E. Ferretti et al., “Human mesenchymal stem cells modulate B-cell functions,” Blood, vol. 107, no. 1, pp. 367–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Reppel, T. Margossian, L. Yaghi et al., “Hypoxic culture conditions for Mesenchymal Stromal/Stem Cells from Wharton's jelly: a critical parameter to consider in a therapeutic context,” Current Stem Cell Research & Therapy, vol. 9, no. 4, pp. 306–318, 2014. View at Publisher · View at Google Scholar
  47. D. E. Wright, A. J. Wagers, A. P. Gulati, F. L. Johnson, and I. L. Weissman, “Physiological migration of hematopoietic stem and progenitor cells,” Science, vol. 294, no. 5548, pp. 1933–1936, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. H. H. Chen, V. Decot, J. P. Ouyang, J. F. Stoltz, D. Bensoussan, and N. G. De Isla, “In vitro initial expansion of mesenchymal stem cells is influenced by the culture parameters used in the isolation process,” Bio-Medical Materials and Engineering, vol. 19, no. 4-5, pp. 301–309, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. E. U. Alt, C. Senst, S. N. Murthy et al., “Aging alters tissue resident mesenchymal stem cell properties,” Stem Cell Research, vol. 8, no. 2, pp. 215–225, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. M. S. Rao and M. P. Mattson, “Stem cells and aging: expanding the possibilities,” Mechanisms of Ageing and Development, vol. 122, no. 7, pp. 713–734, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. B. M. Schipper, K. G. Marra, W. Zhang, A. D. Donnenberg, and J. P. Rubin, “Regional anatomic and age effects on cell function of human adipose-derived stem cells,” Annals of Plastic Surgery, vol. 60, no. 5, pp. 538–544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Zhou, J. S. Greenberger, M. W. Epperly et al., “Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts,” Aging Cell, vol. 7, no. 3, pp. 335–343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Zhu, E. Kohan, J. Bradley, M. Hedrick, P. Benhaim, and P. Zuk, “The effect of age on osteogenic, adipogenic and proliferative potential of female adipose-derived stem cells,” Journal of Tissue Engineering and Regenerative Medicine, vol. 3, no. 4, pp. 290–301, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. Y. Li, N. Charif, D. Mainard, D. Bensoussan, J.-F. Stoltz, and N. de Isla, “Donor's age dependent proliferation decrease of human bone marrow mesenchymal stem cells is linked to diminished clonogenicity,” Bio-Medical Materials and Engineering, vol. 24, no. 1, supplement, pp. 47–52, 2014. View at Publisher · View at Google Scholar
  55. G. Brooke, H. Tong, J.-P. Levesque, and K. Atkinson, “Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta,” Stem Cells and Development, vol. 17, no. 5, pp. 929–940, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. J. W. Goodman and G. S. Hodgson, “Evidence for stem cells in the peripheral blood of mice,” Blood, vol. 19, pp. 702–714, 1962. View at Google Scholar · View at Scopus
  57. Y. Jiang, B. Vaessen, T. Lenvik, M. Blackstad, M. Reyes, and C. M. Verfaillie, “Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain,” Experimental Hematology, vol. 30, no. 8, pp. 896–904, 2002. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Tolar, M. J. O'Shaughnessy, A. Panoskaltsis-Mortari et al., “Host factors that impact the biodistribution and persistence of multipotent adult progenitor cells,” Blood, vol. 107, no. 10, pp. 4182–4188, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. M.-C. Kastrinaki, I. Andreakou, P. Charbord, and H. A. Papadaki, “Isolation of human bone marrow mesenchymal stem cells using different membrane markers: comparison of colony/cloning efficiency, differentiation potential, and molecular profile,” Tissue Engineering Part C: Methods, vol. 14, no. 4, pp. 333–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. M. F. Pera, “Stem cells: the dark side of induced pluripotency,” Nature, vol. 471, no. 7336, pp. 46–47, 2011. View at Publisher · View at Google Scholar · View at Scopus
  61. G. Brooke, M. Cook, C. Blair et al., “Therapeutic applications of mesenchymal stromal cells,” Seminars in Cell & Developmental Biology, vol. 18, no. 6, pp. 846–858, 2007. View at Google Scholar
  62. A. Giordano, U. Galderisi, and I. R. Marino, “From the laboratory bench to the patient's bedside: an update on clinical trials with Mesenchymal Stem Cells,” Journal of Cellular Physiology, vol. 211, no. 1, pp. 27–35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Tarte, J. Gaillard, J.-J. Lataillade et al., “Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation,” Blood, vol. 115, no. 8, pp. 1549–1553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Brooke, T. Rossetti, R. Pelekanos et al., “Manufacturing of human placenta-derived mesenchymal stem cells for clinical trials,” British Journal of Haematology, vol. 144, no. 4, pp. 571–579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. J. F. Stoltz, D. Dumas, X. Wang et al., “Influence of mechanical forces on cells and tissues,” Biorheology, vol. 37, no. 1-2, pp. 3–14, 2000. View at Google Scholar · View at Scopus
  66. T. Lapidot, C. Sirard, J. Vormoor et al., “A cell initiating human acute myeloid leukaemia after transplantation into SCID mice,” Nature, vol. 367, no. 6464, pp. 645–648, 1994. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, “Prospective identification of tumorigenic breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3983–3988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  68. S. K. Singh, C. Hawkins, I. D. Clarke et al., “Identification of human brain tumour initiating cells,” Nature, vol. 432, no. 7015, pp. 396–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. A. T. Collins, P. A. Berry, C. Hyde, M. J. Stower, and N. J. Maitland, “Prospective identification of tumorigenic prostate cancer stem cells,” Cancer Research, vol. 65, no. 23, pp. 10946–10951, 2005. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Li, D. G. Heidt, P. Dalerba et al., “Identification of pancreatic cancer stem cells,” Cancer Research, vol. 67, no. 3, pp. 1030–1037, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. P. Dalerba, R. W. Cho, and M. F. Clarke, “Cancer stem cells: models and concepts,” Annual Review of Medicine, vol. 58, pp. 267–284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  72. W.-T. Liao, Y.-P. Ye, Y.-J. Deng, X.-W. Bian, and Y.-Q. Ding, “Metastatic cancer stem cells: from the concept to therapeutics,” American Journal of Stem Cells, vol. 3, no. 2, pp. 46–62, 2014. View at Google Scholar
  73. A. D. Kim, D. L. Stachura, and D. Traver, “Cell signaling pathways involved in hematopoietic stem cell specification,” Experimental Cell Research, vol. 329, no. 2, pp. 227–233, 2014. View at Publisher · View at Google Scholar
  74. Y. Wu, Z. Wang, Y. Cao et al., “Cotransplantation of haploidentical hematopoietic and umbilical cord mesenchymal stem cells with a myeloablative regimen for refractory/relapsed hematologic malignancy,” Annals of Hematology, vol. 92, no. 12, pp. 1675–1684, 2013. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. Wu, Y. Cao, X. Li et al., “Cotransplantation of haploidentical hematopoietic and umbilical cord mesenchymal stem cells for severe aplastic anemia: successful engraftment and mild GVHD,” Stem Cell Research, vol. 12, no. 1, pp. 132–138, 2014. View at Publisher · View at Google Scholar · View at Scopus
  76. J. J. Auletta, S. K. Eid, P. Wuttisarnwattana et al., “Human mesenchymal stromal cells attenuate graft-versus-host disease and maintain graft-versus-leukemia activity following experimental allogeneic bone marrow transplantation,” Stem Cells, vol. 33, no. 2, pp. 601–614, 2015. View at Publisher · View at Google Scholar
  77. M. S. Cairo and J. E. Wagner, “Placental and/or umbilical cord blood: an alternative source of hematopoietic stem cells for transplantation,” Blood, vol. 90, no. 12, pp. 4665–4678, 1997. View at Google Scholar · View at Scopus
  78. J. Cany, H. Dolstra, and N. Shah, “Umbilical cord blood–derived cellular products for cancer immunotherapy,” Cytotherapy, vol. 17, no. 6, pp. 739–748, 2015. View at Publisher · View at Google Scholar
  79. V. Rocha, C. Chastang, G. Souillet et al., “Related cord blood transplants: the Eurocord experience from 78 transplants,” Bone Marrow Transplantation, vol. 21, supplement 3, pp. S59–S62, 1998. View at Publisher · View at Google Scholar · View at Scopus
  80. E. Gluckman, “Ten years of cord blood transplantation: from bench to bedside,” British Journal of Haematology, vol. 147, no. 2, pp. 192–199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. M. E. Horwitz and F. Frassoni, “Improving the outcome of umbilical cord blood transplantation through ex vivo expansion or graft manipulation,” Cytotherapy, vol. 17, no. 6, pp. 730–738, 2015. View at Publisher · View at Google Scholar
  82. K. K. Ballen, E. Gluckman, and H. E. Broxmeyer, “Umbilical cord blood transplantation: the first 25 years and beyond,” Blood, vol. 122, no. 4, pp. 491–498, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. M. Gigante and E. Ranieri, “Role of cytotoxic CD4+ T cells in cancer immunotherapy,” Immunotherapy, vol. 2, no. 5, pp. 607–608, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. G. Zhang, H. Zhao, J. Wu et al., “Adoptive immunotherapy for non-small cell lung cancer by NK and cytotoxic T lymphocytes mixed effector cells: retrospective clinical observation,” International Immunopharmacology, vol. 21, no. 2, pp. 396–405, 2014. View at Publisher · View at Google Scholar
  85. V. Decot, L. Voillard, V. Latger-Cannard et al., “Natural-killer cell amplification for adoptive leukemia relapse immunotherapy: comparison of three cytokines, IL-2, IL-15, or IL-7 and impact on NKG2D, KIR2DL1, and KIR2DL2 expression,” Experimental Hematology, vol. 38, no. 5, pp. 351–362, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Cheng, Y. Chen, W. Xiao, R. Sun, and Z. Tian, “NK cell-based immunotherapy for malignant diseases,” Cellular & Molecular Immunology, vol. 10, no. 3, pp. 230–252, 2013. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Eguizabal, O. Zenarruzabeitia, J. Monge et al., “Natural killer cells for cancer immunotherapy: pluripotent stem cells-derived NK cells as an immunotherapeutic perspective,” Frontiers in Immunology, vol. 5, article 439, 2014. View at Publisher · View at Google Scholar
  88. Y. Zhang, L. Wang, D. Li, and N. Li, “Taming regulatory T cells by autologous T cell immunization: a potential new strategy for cancer immune therapy,” International Immunopharmacology, vol. 9, no. 5, pp. 593–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Xu, W. Xu, Z. Jiang, F. Zhang, Y. Chu, and S. Xiong, “Depletion of CD4+ CD25high regulatory T cells from tumor infiltrating lymphocytes predominantly induces Th1 type immune response in vivo which inhibits tumor growth in adoptive immunotherapy,” Cancer Biology and Therapy, vol. 8, no. 1, pp. 66–72, 2009. View at Google Scholar · View at Scopus
  90. F. Dazzi and F. M. Marelli-Berg, “Mesenchymal stem cells for graft-versus-host disease: close encounters with T cells,” European Journal of Immunology, vol. 38, no. 6, pp. 1479–1482, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. K. Le Blanc, I. Rasmusson, B. Sundberg et al., “Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells,” The Lancet, vol. 363, no. 9419, pp. 1439–1441, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. N. Kim, K.-I. Im, J.-Y. Lim et al., “Mesenchymal stem cells for the treatment and prevention of graft-versus-host disease: experiments and practice,” Annals of Hematology, vol. 92, no. 10, pp. 1295–1308, 2013. View at Publisher · View at Google Scholar · View at Scopus
  93. J. D. Glenn and K. A. Whartenby, “Mesenchymal stem cells: emerging mechanisms of immunomodulation and therapy,” World Journal of Stem Cells, vol. 6, no. 5, pp. 526–539, 2014. View at Publisher · View at Google Scholar
  94. M. Introna and A. Rambaldi, “Mesenchymal stromal cells for prevention and treatment of graft-versus-host disease,” Current Opinion in Organ Transplantation, vol. 20, no. 1, pp. 72–78, 2015. View at Publisher · View at Google Scholar
  95. N. Amariglio, A. Hirshberg, B. W. Scheithauer et al., “Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient,” PLoS Medicine, vol. 6, no. 2, Article ID e1000029, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. J. Tritz-Schiavi, N. Charif, C. Henrionnet et al., “Original approach for cartilage tissue engineering with mesenchymal stem cells,” Bio-Medical Materials and Engineering, vol. 20, no. 3, pp. 167–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. A. I. Caplan and S. P. Bruder, “Mesenchymal stem cells: building blocks for molecular medicine in the 21st century,” Trends in Molecular Medicine, vol. 7, no. 6, pp. 259–264, 2001. View at Google Scholar · View at Scopus
  98. A. Schäffler and C. Büchler, “Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies,” Stem Cells, vol. 25, no. 4, pp. 818–827, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. J. F. Stoltz, Ed., Regenerative Medicine and Cell Therapy, IOS Press, Amsterdam, The Netherlands, 2012.
  100. A. I. Caplan, “Adult mesenchymal stem cells for tissue engineering versus regenerative medicine,” Journal of Cellular Physiology, vol. 213, no. 2, pp. 341–347, 2007. View at Publisher · View at Google Scholar · View at Scopus
  101. H. Gai, E. L.-H. Leung, P. D. Costantino et al., “Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts,” Cell Biology International, vol. 33, no. 11, pp. 1184–1193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. R. E. Bittner, C. Schöfer, K. Weipoltshammer et al., “Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice,” Anatomy and Embryology, vol. 199, no. 5, pp. 391–396, 1999. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Deb, S. Wang, K. A. Skelding, D. Miller, D. Simper, and N. M. Caplice, “Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients,” Circulation, vol. 107, no. 9, pp. 1247–1249, 2003. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Itescu, A. A. Kocher, and M. D. Schuster, “Myocardial neovascularization by adult bone marrow-derived angioblasts: strategies for improvement of cardiomyocyte function,” Heart Failure Reviews, vol. 8, no. 3, pp. 253–258, 2003. View at Publisher · View at Google Scholar · View at Scopus
  105. S. Kang, Y. J. Yang, C. J. Li, and R. L. Gao, “Effects of intracoronary autologous bone marrow cells on left ventricular function in acute myocardial infarction: a systematic review and meta-analysis for randomized controlled trials,” Coronary Artery Disease, vol. 19, no. 5, pp. 327–335, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. M. A. Laflamme, D. Myerson, J. E. Saffitz, and C. E. Murry, “Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts,” Circulation Research, vol. 90, no. 6, pp. 634–640, 2002. View at Publisher · View at Google Scholar · View at Scopus
  107. R.-J. Swijnenburg, M. Tanaka, H. Vogel et al., “Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium,” Circulation, vol. 112, no. 9, supplement, pp. I166–I172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  108. J. Tang, Q. Xie, G. Pan, J. Wang, and M. Wang, “Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion,” European Journal of Cardio-Thoracic Surgery, vol. 30, no. 2, pp. 353–361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. C. Toma, M. F. Pittenger, K. S. Cahill, B. J. Byrne, and P. D. Kessler, “Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart,” Circulation, vol. 105, no. 1, pp. 93–98, 2002. View at Publisher · View at Google Scholar · View at Scopus
  110. A. P. Gee, S. Richman, A. Durett et al., “Multicenter cell processing for cardiovascular regenerative medicine applications: the Cardiovascular Cell Therapy Research Network (CCTRN) experience,” Cytotherapy, vol. 12, no. 5, pp. 684–691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. B. Trachtenberg, D. L. Velazquez, A. R. Williams et al., “Rationale and design of the transendocardial injection of autologous human cells (bone marrow or mesenchymal) in chronic ischemic left ventricular dysfunction and heart failure secondary to myocardial infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy,” American Heart Journal, vol. 161, no. 3, pp. 487–493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. J. M. Hare, J. H. Traverse, T. D. Henry et al., “A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 54, no. 24, pp. 2277–2286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. S.-L. Chen, W.-W. Fang, F. Ye et al., “Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction,” The American Journal of Cardiology, vol. 94, no. 1, pp. 92–95, 2004. View at Publisher · View at Google Scholar · View at Scopus
  114. K. H. Wu, B. Zhou, X. M. Mo et al., “Therapeutic potential of human umbilical cord-derived stem cells in ischemic diseases,” Transplantation Proceedings, vol. 39, no. 5, pp. 1620–1622, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. N. Berthelemy, H. Kerdjoudj, P. Schaaf et al., “O2 level controls hematopoietic circulating progenitor cells differentiation into endothelial or smooth muscle cells,” PLoS ONE, vol. 4, no. 5, Article ID e5514, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. M. Faustini, M. Bucco, T. Chlapanidas et al., “Nonexpanded mesenchymal stem cells for regenerative medicine: yield in stromal vascular fraction from adipose tissues,” Tissue Engineering Part C: Methods, vol. 16, no. 6, pp. 1515–1521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. S. Kachgal and A. J. Putnam, “Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms,” Angiogenesis, vol. 14, no. 1, pp. 47–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  118. D. Kaigler, P. H. Krebsbach, P. J. Polverini, and D. J. Mooney, “Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells,” Tissue Engineering, vol. 9, no. 1, pp. 95–103, 2003. View at Publisher · View at Google Scholar · View at Scopus
  119. C. Sengenès, A. Miranville, M. Maumus, S. de Barros, R. Busse, and A. Bouloumié, “Chemotaxis and differentiation of human adipose tissue CD34+/CD31- progenitor cells: role of stromal derived factor-1 released by adipose tissue capillary endothelial cells,” Stem Cells, vol. 25, no. 9, pp. 2269–2276, 2007. View at Publisher · View at Google Scholar
  120. F. Zhang, S. Tsai, K. Kato et al., “Transforming growth factor-β promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells,” The Journal of Biological Chemistry, vol. 284, no. 26, pp. 17564–17574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. U.-M. Riegelsberger, A. Deten, C. Pösel et al., “Intravenous human umbilical cord blood transplantation for stroke: impact on infarct volume and caspase-3-dependent cell death in spontaneously hypertensive rats,” Experimental Neurology, vol. 227, no. 1, pp. 218–223, 2011. View at Publisher · View at Google Scholar · View at Scopus
  122. J. S. Lee, J. M. Hong, G. J. Moon, P. H. Lee, Y. H. Ahn, and O. Y. Bang, “A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke,” Stem Cells, vol. 28, no. 6, pp. 1099–1106, 2010. View at Publisher · View at Google Scholar · View at Scopus
  123. Y. Jiang, W. Zhu, J. Zhu, L. Wu, G. Xu, and X. Liu, “Feasibility of delivering mesenchymal stem cells via catheter to the proximal end of the lesion artery in patients with stroke in the territory of the middle cerebral artery,” Cell Transplantation, vol. 22, no. 12, pp. 2291–2298, 2013. View at Publisher · View at Google Scholar · View at Scopus
  124. D. C. Hess, C. A. Sila, A. J. Furlan, L. R. Wechsler, J. A. Switzer, and R. W. Mays, “A double-blind placebo-controlled clinical evaluation of MultiStem for the treatment of ischemic stroke,” International Journal of Stroke, vol. 9, no. 3, pp. 381–386, 2014. View at Publisher · View at Google Scholar · View at Scopus
  125. S.-T. Lee, K. Chu, K.-H. Jung et al., “Slowed progression in models of Huntington disease by adipose stem cell transplantation,” Annals of Neurology, vol. 66, no. 5, pp. 671–681, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. T. Lopatina, N. Kalinina, M. Karagyaur et al., “Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de Novo,” PLoS ONE, vol. 6, no. 3, Article ID e17899, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. J. Alper, “Geron gets green light for human trial of ES cell-derived product,” Nature Biotechnology, vol. 27, no. 3, pp. 213–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  128. A. R. Chapman and C. C. Scala, “Evaluating the first-in-human clinical trial of a human embryonic stem cell-based therapy,” Kennedy Institute of Ethics Journal, vol. 22, no. 3, pp. 243–261, 2012. View at Publisher · View at Google Scholar · View at Scopus
  129. P. Bigini, P. Veglianese, G. Andriolo et al., “Intracerebroventricular administration of human umbilical cord blood cells delays disease progression in two murine models of motor neuron degeneration,” Rejuvenation Research, vol. 14, no. 6, pp. 623–639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  130. N. K. Venkataramana, S. K. V. Kumar, S. Balaraju et al., “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease,” Translational Research, vol. 155, no. 2, pp. 62–70, 2010. View at Publisher · View at Google Scholar · View at Scopus
  131. J. Y. Shin, H. J. Park, H. N. Kim et al., “Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models,” Autophagy, vol. 10, no. 1, pp. 32–44, 2014. View at Publisher · View at Google Scholar · View at Scopus
  132. C. M. Lewis and M. Suzuki, “Therapeutic applications of mesenchymal stem cells for amyotrophic lateral sclerosis,” Stem Cell Research and Therapy, vol. 5, no. 2, article no. 32, 2014. View at Publisher · View at Google Scholar · View at Scopus
  133. N. de Isla, C. Huseltein, N. Jessel et al., “Introduction to tissue engineering and application for cartilage engineering,” Bio-Medical Materials and Engineering, vol. 20, no. 3-4, pp. 127–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. F. Mao, W.-R. Xu, H. Qian et al., “Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis,” Inflammation Research, vol. 59, no. 3, pp. 219–225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  135. J. F. Stoltz, Ed., Mechanobiology: Cartilage and Chondrocyte, IOS Press, Washington, DC, USA, 2006.
  136. J. A. Buckwalter, M. Lotz, and J. F. Stoltz, Osteoarthritis, Inflammation, and Degradation: A Continuum, IOS Press, Amsterdam, The Netherlands, 2007.
  137. A. Arthur, A. Zannettino, and S. Gronthos, “The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair,” Journal of Cellular Physiology, vol. 218, no. 2, pp. 237–245, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. S. P. Bruder, A. A. Kurth, M. Shea, W. C. Hayes, N. Jaiswal, and S. Kadiyala, “Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 16, no. 2, pp. 155–162, 1998. View at Publisher · View at Google Scholar · View at Scopus
  139. S. Wakitani, T. Mitsuoka, N. Nakamura, Y. Toritsuka, Y. Nakamura, and S. Horibe, “Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports,” Cell Transplantation, vol. 13, no. 5, pp. 595–600, 2004. View at Publisher · View at Google Scholar · View at Scopus
  140. C. Chen, D. T. Tambe, L. Deng, and L. Yang, “Biomechanical properties and mechanobiology of the articular chondrocyte,” The American Journal of Physiology—Cell Physiology, vol. 305, no. 12, pp. C1202–C1208, 2013. View at Publisher · View at Google Scholar · View at Scopus
  141. R. E. Wilusz, J. Sanchez-Adams, and F. Guilak, “The structure and function of the pericellular matrix of articular cartilage,” Matrix Biology, vol. 39, pp. 25–32, 2014. View at Publisher · View at Google Scholar
  142. H. A. Breinan, T. Minas, H.-P. Hsu, S. Nehrer, C. B. Sledge, and M. Spector, “Effect of cultured autologous chondrocytes on repair of chondral defects in a canine model,” The Journal of Bone & Joint Surgery Series A, vol. 79, no. 10, pp. 1439–1451, 1997. View at Google Scholar · View at Scopus
  143. B. Schmitt, J. Ringe, T. Häupl et al., “BMP2 initiates chondrogenic lineage development of adult human mesenchymal stem cells in high-density culture,” Differentiation, vol. 71, no. 9-10, pp. 567–577, 2003. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Wakitani, K. Imoto, T. Yamamoto, M. Saito, N. Murata, and M. Yoneda, “Human autologous culture expanded bone marrow-mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees,” Osteoarthritis and Cartilage, vol. 10, no. 3, pp. 199–206, 2002. View at Publisher · View at Google Scholar · View at Scopus
  145. M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” The New England Journal of Medicine, vol. 331, no. 14, pp. 889–895, 1994. View at Publisher · View at Google Scholar · View at Scopus
  146. C. Huselstein, P. Netter, N. de Isla et al., “Mechanobiology, chondrocyte and cartilage,” Bio-Medical Materials and Engineering, vol. 18, no. 4-5, pp. 213–220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  147. P. Angele, J. U. Yoo, C. Smith et al., “Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro,” Journal of Orthopaedic Research, vol. 21, no. 3, pp. 451–457, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. F. Barry, R. E. Boynton, B. Liu, and J. M. Murphy, “Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components,” Experimental Cell Research, vol. 268, no. 2, pp. 189–200, 2001. View at Publisher · View at Google Scholar · View at Scopus
  149. J. J. Campbell, D. A. Lee, and D. L. Bader, “Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells,” Biorheology, vol. 43, no. 3-4, pp. 455–470, 2006. View at Google Scholar · View at Scopus
  150. L. de Girolamo, S. Lopa, E. Arrigoni, M. F. Sartori, F. W. B. Preis, and A. T. Brini, “Human adipose-derived stem cells isolated from young and elderly women: their differentiation potential and scaffold interaction during in vitro osteoblastic differentiation,” Cytotherapy, vol. 11, no. 6, pp. 793–803, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. K. Hiraoka, S. Grogan, T. Olee, and M. Lotz, “Mesenchymal progenitor cells in adult human articular cartilage,” Biorheology, vol. 43, no. 3-4, pp. 447–454, 2006. View at Google Scholar · View at Scopus
  152. J. I. Huang, N. Kazmi, M. M. Durbhakula, T. M. Hering, J. U. Yoo, and B. Johnstone, “Chondrogenic potential of progenitor cells derived from human bone marrow and adipose tissue: a patient-matched comparison,” Journal of Orthopaedic Research, vol. 23, no. 6, pp. 1383–1389, 2005. View at Publisher · View at Google Scholar · View at Scopus
  153. J.-F. Stoltz, C. Huselstein, J. Schiavi et al., “Human stem cells and articular cartilage tissue engineering,” Current Pharmaceutical Biotechnology, vol. 13, no. 15, pp. 2682–2691, 2012. View at Publisher · View at Google Scholar · View at Scopus
  154. C.-Y. Fong, A. Subramanian, K. Gauthaman et al., “Human umbilical cord Wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment,” Stem Cell Reviews and Reports, vol. 8, no. 1, pp. 195–209, 2012. View at Publisher · View at Google Scholar · View at Scopus
  155. X. Chen, F. Zhang, X. He et al., “Chondrogenic differentiation of umbilical cord-derived mesenchymal stem cells in type I collagen-hydrogel for cartilage engineering,” Injury, vol. 44, no. 4, pp. 540–549, 2013. View at Publisher · View at Google Scholar · View at Scopus
  156. S. Liu, K. D. Hou, M. Yuan et al., “Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage,” Journal of Bioscience and Bioengineering, vol. 117, no. 2, pp. 229–235, 2014. View at Publisher · View at Google Scholar · View at Scopus
  157. S. Ciavarella, F. Dammacco, M. de Matteo, G. Loverro, and F. Silvestris, “Umbilical cord mesenchymal stem cells: role of regulatory genes in their differentiation to osteoblasts,” Stem Cells and Development, vol. 18, no. 8, pp. 1211–1220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  158. K. L. Wong, K. B. L. Lee, B. C. Tai, P. Law, E. H. Lee, and J. H. P. Hui, “Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years' follow-up,” Arthroscopy, vol. 29, no. 12, pp. 2020–2028, 2013. View at Publisher · View at Google Scholar · View at Scopus
  159. C. H. Jo, Y. G. Lee, W. H. Shin et al., “Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial,” Stem Cells, vol. 32, no. 5, pp. 1254–1266, 2014. View at Publisher · View at Google Scholar · View at Scopus
  160. A. Vega, M. A. Martín-Ferrero, F. Del Canto et al., “Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial,” Transplantation, 2015. View at Publisher · View at Google Scholar
  161. M. Dubský, A. Jirkovská, R. Bem et al., “Comparison of the effect of stem cell therapy and percutaneous transluminal angioplasty on diabetic foot disease in patients with critical limb ischemia,” Cytotherapy, vol. 16, no. 12, pp. 1733–1738, 2014. View at Publisher · View at Google Scholar
  162. R. Subrammaniyan, J. Amalorpavanathan, R. Shankar et al., “Our experience of application of Autologous Bone Marrow Stem Cells in critical limb ischemia in six diabetic patients—a five-year follow-up,” Journal of Stem cells & Regenerative Medicine, vol. 7, no. 2, p. 97, 2011. View at Google Scholar
  163. V. Sordi, M. L. Malosio, F. Marchesi et al., “Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets,” Blood, vol. 106, no. 2, pp. 419–427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  164. A. G. Tzakis, C. Ricordi, R. Alejandro et al., “Pancreatic islet transplantation after upper abdominal exenteration and liver replacement,” The Lancet, vol. 336, no. 8712, pp. 402–405, 1990. View at Publisher · View at Google Scholar · View at Scopus
  165. A. M. J. Shapiro, J. R. T. Lakey, E. A. Ryan et al., “Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen,” The New England Journal of Medicine, vol. 343, no. 4, pp. 230–238, 2000. View at Publisher · View at Google Scholar · View at Scopus
  166. N. C. Close, B. J. Hering, and T. L. Eggerman, “Results from the inaugural year of the Collaborative Islet Transplant Registry,” Transplantation Proceedings, vol. 37, no. 2, pp. 1305–1308, 2005. View at Publisher · View at Google Scholar · View at Scopus
  167. A. M. J. Shapiro, J. R. T. Lakey, B. W. Paty, P. A. Senior, D. L. Bigam, and E. A. Ryan, “Strategic opportunities in clinical islet transplantation,” Transplantation, vol. 79, no. 10, pp. 1304–1307, 2005. View at Publisher · View at Google Scholar · View at Scopus
  168. P. Czubak, A. Bojarska-Junak, J. Tabarkiewicz, and L. Putowski, “A modified method of insulin producing cells’ generation from bone marrow-derived mesenchymal stem cells,” Journal of Diabetes Research, vol. 2014, Article ID 628591, 7 pages, 2014. View at Publisher · View at Google Scholar
  169. L. Khorsandi, F. Nejad-Dehbashi, A. Ahangarpour, and M. Hashemitabar, “Three-dimensional differentiation of bone marrow-derived mesenchymal stem cells into insulin-producing cells,” Tissue and Cell, vol. 47, no. 1, pp. 66–72, 2015. View at Publisher · View at Google Scholar
  170. S. Kadam, S. Muthyala, P. Nair, and R. Bhonde, “Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes,” The Review of Diabetic Studies, vol. 7, no. 2, pp. 168–182, 2010. View at Google Scholar · View at Scopus
  171. H. Qu, X. Liu, Y. Ni et al., “Laminin 411 acts as a potent inducer of umbilical cord mesenchymal stem cell differentiation into insulin-producing cells,” Journal of Translational Medicine, vol. 12, no. 1, article 135, 2014. View at Publisher · View at Google Scholar · View at Scopus
  172. P.-J. Tsai, H.-S. Wang, G.-J. Lin et al., “Undifferentiated Wharton's jelly mesenchymal stem cell transplantation induces insulin-producing cell differentiation and suppression of T cell-mediated autoimmunity in non-obese diabetic mice,” Cell Transplantation, 2014. View at Publisher · View at Google Scholar
  173. K. A. D'Amour, A. D. Agulnick, S. Eliazer, O. G. Kelly, E. Kroon, and E. E. Baetge, “Efficient differentiation of human embryonic stem cells to definitive endoderm,” Nature Biotechnology, vol. 23, no. 12, pp. 1534–1541, 2005. View at Publisher · View at Google Scholar · View at Scopus
  174. S. Chen, M. Borowiak, J. L. Fox et al., “A small molecule that directs differentiation of human ESCs into the pancreatic lineage,” Nature Chemical Biology, vol. 5, no. 4, pp. 258–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  175. E. Kroon, L. A. Martinson, K. Kadoya et al., “Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo,” Nature Biotechnology, vol. 26, no. 4, pp. 443–452, 2008. View at Publisher · View at Google Scholar · View at Scopus
  176. K. Tateishi, J. He, O. Taranova, G. Liang, A. C. D'Alessio, and Y. Zhang, “Generation of insulin-secreting islet-like clusters from human skin fibroblasts,” Journal of Biological Chemistry, vol. 283, no. 46, pp. 31601–31607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  177. T. Thatava, T. J. Nelson, R. Edukulla et al., “Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny,” Gene Therapy, vol. 18, no. 3, pp. 283–293, 2011. View at Publisher · View at Google Scholar · View at Scopus
  178. R. Jiang, Z. Han, G. Zhuo et al., “Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study,” Frontiers of Medicine in China, vol. 5, no. 1, pp. 94–100, 2011. View at Publisher · View at Google Scholar · View at Scopus
  179. J. Hu, X. Yu, Z. Wang et al., “Long term effects of the implantation of Wharton's jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus,” Endocrine Journal, vol. 60, no. 3, pp. 347–357, 2013. View at Publisher · View at Google Scholar · View at Scopus
  180. D. Kong, X. Zhuang, D. Wang et al., “Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus,” Clinical Laboratory, vol. 60, no. 12, pp. 1969–1976, 2014. View at Google Scholar
  181. P. Carlsson, E. Schwarcz, O. Korsgren, and K. Le Blanc, “Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells,” Diabetes, vol. 64, no. 2, pp. 587–592, 2015. View at Publisher · View at Google Scholar
  182. S. T. Rashid, S. Corbineau, N. Hannan et al., “Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells,” Journal of Clinical Investigation, vol. 120, no. 9, pp. 3127–3136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  183. L. Zhang, J.-S. Ye, V. Decot, J.-F. Stoltz, and N. de Isla, “Research on stem cells as candidates to be differentiated into hepatocytes,” Bio-Medical Materials and Engineering, vol. 22, no. 1–3, pp. 105–111, 2012. View at Publisher · View at Google Scholar · View at Scopus
  184. Q. Zhao, H. Ren, X. Li et al., “Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells,” Cytotherapy, vol. 11, no. 4, pp. 414–426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  185. T. S. Ramasamy, J. S. L. Yu, C. Selden, H. Hodgson, and W. Cui, “Application of three-dimensional culture conditions to human embryonic stem cell-derived definitive endoderm cells enhances hepatocyte differentiation and functionality,” Tissue Engineering Part A, vol. 19, no. 3-4, pp. 360–367, 2013. View at Publisher · View at Google Scholar · View at Scopus
  186. J. Jozefczuk, A. Prigione, L. Chavez, and J. Adjaye, “Comparative analysis of human embryonic stem cell and induced pluripotent stem cell-derived hepatocyte-like cells reveals current drawbacks and possible strategies for improved differentiation,” Stem Cells and Development, vol. 20, no. 7, pp. 1259–1275, 2011. View at Publisher · View at Google Scholar · View at Scopus
  187. K. Si-Tayeb, F. K. Noto, M. Nagaoka et al., “Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells,” Hepatology, vol. 51, no. 1, pp. 297–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  188. M. Mohamadnejad, K. Alimoghaddam, M. Bagheri et al., “Randomized placebo-controlled trial of mesenchymal stem cell transplantation in decompensated cirrhosis,” Liver International, vol. 33, no. 10, pp. 1490–1496, 2013. View at Publisher · View at Google Scholar · View at Scopus
  189. L. Wang, J. Li, H. Liu et al., “A pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis,” Journal of Gastroenterology and Hepatology, vol. 28, no. 1, pp. 85–92, 2013. View at Publisher · View at Google Scholar · View at Scopus
  190. M. Shi, Z. Zhang, R. Xu et al., “Human mesenchymal stem cell transfusion is safe and improves liver function in acute-on-chronic liver failure patients,” Stem Cells Translational Medicine, vol. 1, no. 10, pp. 725–731, 2012. View at Publisher · View at Google Scholar · View at Scopus
  191. M.-E. M. Amer, S. Z. El-Sayed, W. A. El-Kheir et al., “Clinical and laboratory evaluation of patients with end-stage liver cell failure injected with bone marrow-derived hepatocyte-like cells,” European Journal of Gastroenterology & Hepatology, vol. 23, no. 10, pp. 936–941, 2011. View at Publisher · View at Google Scholar · View at Scopus
  192. A. Atala, S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik, “Tissue-engineered autologous bladders for patients needing cystoplasty,” The Lancet, vol. 367, no. 9518, pp. 1241–1246, 2006. View at Publisher · View at Google Scholar · View at Scopus
  193. L. Ma, Y. Yang, S. C. Sikka et al., “Adipose tissue-derived stem cell-seeded small intestinal submucosa for tunica albuginea grafting and reconstruction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 6, pp. 2090–2095, 2012. View at Publisher · View at Google Scholar · View at Scopus
  194. G. Nolazco, I. Kovanecz, D. Vernet et al., “Effect of muscle-derived stem cells on the restoration of corpora cavernosa smooth muscle and erectile function in the aged rat,” BJU International, vol. 101, no. 9, pp. 1156–1164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  195. J. Y. Bahk, J. H. Jung, H. Han, S. K. Min, and Y. S. Lee, “Treatment of diabetic impotence with umbilical cord blood stem cell intracavernosal transplant: preliminary report of 7 cases,” Experimental and Clinical Transplantation, vol. 8, no. 2, pp. 150–160, 2010. View at Google Scholar · View at Scopus
  196. F. Castiglione, P. Hedlund, F. van der Aa et al., “Intratunical injection of human adipose tissue-derived stem cells prevents fibrosis and is associated with improved erectile function in a rat model of Peyronie's disease,” European Urology, vol. 63, no. 3, pp. 551–560, 2013. View at Publisher · View at Google Scholar
  197. T. K. Ng, V. R. Fortino, D. Pelaez, and H. S. Cheung, “Progress of mesenchymal stem cell therapy for neural and retinal diseases,” World Journal of Stem Cells, vol. 6, no. 2, pp. 111–119, 2014. View at Publisher · View at Google Scholar
  198. A. Tzameret, I. Sher, M. Belkin et al., “Transplantation of human bone marrow mesenchymal stem cells as a thin subretinal layer ameliorates retinal degeneration in a rat model of retinal dystrophy,” Experimental Eye Research, vol. 118, pp. 135–144, 2014. View at Publisher · View at Google Scholar · View at Scopus
  199. Y. Hu, H. B. Tan, X. M. Wang, H. Rong, and H. P. Cui, “Bone marrow mesenchymal stem cells protect against retinal ganglion cell loss in aged rats with glaucoma,” Clinical Interventions in Aging, vol. 8, pp. 1467–1470, 2013. View at Publisher · View at Google Scholar · View at Scopus
  200. L. Ronzoni, P. Bonara, D. Rusconi, C. Frugoni, I. Libani, and M. D. Cappellini, “Erythroid differentiation and maturation from peripheral CD34+ cells in liquid culture: cellular and molecular characterization,” Blood Cells, Molecules, and Diseases, vol. 40, no. 2, pp. 148–155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  201. E. Olivier, C. Qiu, and E. E. Bouhassira, “Novel, high-yield red blood cell production methods from CD34-positive cells derived from human embryonic stem, yolk sac, fetal liver, cord blood, and peripheral blood,” Stem Cells Translational Medicine, vol. 1, no. 8, pp. 604–614, 2012. View at Publisher · View at Google Scholar · View at Scopus
  202. F. Ma, Y. Ebihara, K. Umeda et al., “Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 35, pp. 13087–13092, 2008. View at Publisher · View at Google Scholar · View at Scopus
  203. Y. Ebihara, F. Ma, and K. Tsuji, “Generation of red blood cells from human embryonic/induced pluripotent stem cells for blood transfusion,” International Journal of Hematology, vol. 95, no. 6, pp. 610–616, 2012. View at Publisher · View at Google Scholar · View at Scopus
  204. C.-T. Yang, A. French, P. A. Goh et al., “Human induced pluripotent stem cell derived erythroblasts can undergo definitive erythropoiesis and co-express gamma and beta globins,” British Journal of Haematology, vol. 166, no. 3, pp. 435–448, 2014. View at Publisher · View at Google Scholar · View at Scopus
  205. A. Atala, “Engineering organs,” Current Opinion in Biotechnology, vol. 20, no. 5, pp. 575–592, 2009. View at Google Scholar
  206. G. Orlando, P. Baptista, M. Birchall et al., “Regenerative medicine as applied to solid organ transplantation: current status and future challenges,” Transplant International, vol. 24, no. 3, pp. 223–232, 2011. View at Publisher · View at Google Scholar · View at Scopus
  207. S. F. Badylak, D. Taylor, and K. Uygun, “Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds,” Annual Review of Biomedical Engineering, vol. 13, pp. 27–53, 2011. View at Publisher · View at Google Scholar · View at Scopus
  208. P. M. Baptista, G. Orlando, S.-H. Mirmalek-Sani, M. Siddiqui, A. Atala, and S. Soker, “Whole organ decellularization—a tool for bioscaffold fabrication and organ bioengineering,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC '09), pp. 6526–6529, 2009.
  209. S. V. Murphy and A. Atala, “Organ engineering—combining stem cells, biomaterials, and bioreactors to produce bioengineered organs for transplantation,” BioEssays, vol. 35, no. 3, pp. 163–172, 2013. View at Publisher · View at Google Scholar · View at Scopus
  210. M. E. Scarritt, N. C. Pashos, and B. A. Bunnell, “A review of cellularization strategies for tissue engineering of whole organs,” Frontiers in Bioengineering and Biotechnology, vol. 3, article 43, 2015. View at Google Scholar
  211. A. Mathur and J. F. Martin, “Stem cells and repair of the heart,” The Lancet, vol. 364, no. 9429, pp. 183–192, 2004. View at Publisher · View at Google Scholar · View at Scopus
  212. H. C. Ott, T. S. Matthiesen, S.-K. Goh et al., “Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart,” Nature Medicine, vol. 14, no. 2, pp. 213–221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  213. A. A. Khan, S. K. Vishwakarma, A. Bardia, and J. Venkateshwarulu, “Repopulation of decellularized whole organ scaffold using stem cells: an emerging technology for the development of neo-organ,” Journal of Artificial Organs, vol. 17, no. 4, pp. 291–300, 2014. View at Publisher · View at Google Scholar
  214. J. M. Singelyn and K. L. Christman, “Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices,” Journal of Cardiovascular Translational Research, vol. 3, no. 5, pp. 478–486, 2010. View at Publisher · View at Google Scholar · View at Scopus
  215. T. Ota, T. W. Gilbert, S. F. Badylak, D. Schwartzman, and M. A. Zenati, “Electromechanical characterization of a tissue-engineered myocardial patch derived from extracellular matrix,” Journal of Thoracic and Cardiovascular Surgery, vol. 133, no. 4, pp. 979–985, 2007. View at Publisher · View at Google Scholar · View at Scopus
  216. I. A. Potapova, S. V. Doronin, D. J. Kelly et al., “Enhanced recovery of mechanical function in the canine heart by seeding an extracellular matrix patch with mesenchymal stem cells committed to a cardiac lineage,” The American Journal of Physiology—Heart and Circulatory Physiology, vol. 295, no. 6, pp. H2257–H2263, 2008. View at Publisher · View at Google Scholar · View at Scopus
  217. E. Martinod, A. Seguin, M. Holder-Espinasse et al., “Tracheal regeneration following tracheal replacement with an allogenic aorta,” Annals of Thoracic Surgery, vol. 79, no. 3, pp. 942–948, 2005. View at Publisher · View at Google Scholar · View at Scopus
  218. D. M. Radu, A. Seguin, P. Bruneval, A. F. Legendre, A. Carpentier, and E. Martinod, “Bronchial replacement with arterial allografts,” Annals of Thoracic Surgery, vol. 90, no. 1, pp. 252–258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  219. G. M. Roomans, “Tissue engineering and the use of stem/progenitor cells for airway epithelium repair,” European Cells & Materials, vol. 19, pp. 284–299, 2010. View at Google Scholar · View at Scopus
  220. A. Seguin, D. Radu, M. Holder-Espinasse et al., “Tracheal replacement with cryopreserved, decellularized, or glutaraldehyde-treated aortic allografts,” Annals of Thoracic Surgery, vol. 87, no. 3, pp. 861–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  221. T. H. Petersen, E. A. Calle, L. Zhao et al., “Tissue-engineered lungs for in vivo implantation,” Science, vol. 329, no. 5991, pp. 538–541, 2010. View at Publisher · View at Google Scholar · View at Scopus
  222. D. A. Chistiakov, “Endogenous and exogenous stem cells: a role in lung repair and use in airway tissue engineering and transplantation,” Journal of Biomedical Science, vol. 17, no. 1, article 92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  223. H. A. Chapman, “Toward lung regeneration,” The New England Journal of Medicine, vol. 364, no. 19, pp. 1867–1868, 2011. View at Publisher · View at Google Scholar · View at Scopus
  224. J. Martin, K. Helm, P. Ruegg, M. Varella-Garcia, E. Burnham, and S. Majka, “Adult lung side population cells have mesenchymal stem cell potential,” Cytotherapy, vol. 10, no. 2, pp. 140–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  225. L. Jarvinen, L. Badri, S. Wettlaufer et al., “Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator,” The Journal of Immunology, vol. 181, no. 6, pp. 4389–4396, 2008. View at Google Scholar · View at Scopus
  226. X. Gong, Z. Sun, D. Cui et al., “Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells,” Cell Biology International, vol. 38, no. 4, pp. 405–411, 2014. View at Publisher · View at Google Scholar
  227. K. Chow, J. P. Fessel, Kaoriihida-Stansbury et al., “Dysfunctional resident lung mesenchymal stem cells contribute to pulmonary microvascular remodeling,” Pulmonary Circulation, vol. 3, no. 1, pp. 31–49, 2013. View at Publisher · View at Google Scholar
  228. K. M. Antoniou, H. A. Papadaki, G. Soufla et al., “Investigation of bone marrow mesenchymal stem cells (BM MSCs) involvement in idiopathic pulmonary fibrosis (IPF),” Respiratory Medicine, vol. 104, no. 10, pp. 1535–1542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  229. Y. Zhang, S. Liao, M. Yang et al., “Improved cell survival and paracrine capacity of human embryonic stem cell-derived mesenchymal stem cells promote therapeutic potential for pulmonary arterial hypertension,” Cell Transplantation, vol. 21, no. 10, pp. 2225–2239, 2012. View at Publisher · View at Google Scholar · View at Scopus
  230. K. D. Liu, J. G. Wilson, H. Zhuo et al., “Design and implementation of the START (STem cells for ARDS Treatment) trial, a phase 1/2 trial of human mesenchymal stem/stromal cells for the treatment of moderate-severe acute respiratory distress syndrome,” Annals of Intensive Care, vol. 4, article 22, 2014. View at Publisher · View at Google Scholar
  231. J. G. Wilson, K. D. Liu, H. Zhuo et al., “Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial,” The Lancet Respiratory Medicine, vol. 3, no. 1, pp. 24–32, 2015. View at Publisher · View at Google Scholar
  232. H. C. Ott, B. Clippinger, C. Conrad et al., “Regeneration and orthotopic transplantation of a bioartificial lung,” Nature Medicine, vol. 16, no. 8, pp. 927–933, 2010. View at Publisher · View at Google Scholar · View at Scopus
  233. J. E. Nichols, J. Niles, M. Riddle et al., “Production and assessment of decellularized pig and human lung scaffolds,” Tissue Engineering Part A, vol. 19, no. 17-18, pp. 2045–2062, 2013. View at Publisher · View at Google Scholar · View at Scopus
  234. D. E. Wagner, N. R. Bonenfant, D. Sokocevic et al., “Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration,” Biomaterials, vol. 35, no. 9, pp. 2664–2679, 2014. View at Publisher · View at Google Scholar · View at Scopus
  235. R. W. Bonvillain, S. Danchuk, D. E. Sullivan et al., “A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells,” Tissue Engineering—Part A, vol. 18, no. 23-24, pp. 2437–2452, 2012. View at Publisher · View at Google Scholar · View at Scopus
  236. J. Cortiella, J. Niles, A. Cantu et al., “Influence of acellular natural lung matrix on murine embryonic stem cell differentiation and tissue formation,” Tissue Engineering Part A, vol. 16, no. 8, pp. 2565–2580, 2010. View at Publisher · View at Google Scholar · View at Scopus
  237. S. Lecht, C. T. Stabler, A. L. Rylander et al., “Enhanced reseeding of decellularized rodent lungs with mouse embryonic stem cells,” Biomaterials, vol. 35, no. 10, pp. 3252–3262, 2014. View at Publisher · View at Google Scholar · View at Scopus
  238. T. Tsuchiya, A. Sivarapatna, K. Rocco, A. Nanashima, T. Nagayasu, and L. E. Niklason, “Future prospects for tissue engineered lung transplantation: decellularization and recellularization-based whole lung regeneration,” Organogenesis, vol. 10, no. 2, pp. 196–207, 2014. View at Google Scholar
  239. A. Soto-Gutierrez, L. Zhang, C. Medberry et al., “A whole-organ regenerative medicine approach for liver replacement,” Tissue Engineering, Part C: Methods, vol. 17, no. 6, pp. 677–686, 2011. View at Publisher · View at Google Scholar · View at Scopus
  240. H. Yagi, K. Fukumitsu, K. Fukuda et al., “Human-scale whole-organ bioengineering for liver transplantation: a regenerative medicine approach,” Cell Transplantation, vol. 22, no. 2, pp. 231–242, 2013. View at Publisher · View at Google Scholar · View at Scopus
  241. J.-S. Ye, J.-F. Stoltz, N. de Isla, Y. Liu, Y.-F. Yin, and L. Zhang, “An approach to preparing decellularized whole liver organ scaffold in rat,” Bio-Medical Materials and Engineering, vol. 25, no. 1, supplement, pp. 159–166, 2015. View at Publisher · View at Google Scholar
  242. W.-C. Jiang, Y.-H. Cheng, M.-H. Yen, Y. Chang, V. W. Yang, and O. K. Lee, “Cryo-chemical decellularization of the whole liver for mesenchymal stem cells-based functional hepatic tissue engineering,” Biomaterials, vol. 35, no. 11, pp. 3607–3617, 2014. View at Publisher · View at Google Scholar · View at Scopus
  243. R. Ji, N. Zhang, N. You et al., “The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice,” Biomaterials, vol. 33, no. 35, pp. 8995–9008, 2012. View at Publisher · View at Google Scholar · View at Scopus
  244. L. Behr, M. Hekmati, A. Lucchini et al., “Evaluation of the effect of autologous mesenchymal stem cell injection in a large-animal model of bilateral kidney ischaemia reperfusion injury,” Cell Proliferation, vol. 42, no. 3, pp. 284–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  245. L. Behr, M. Hekmati, G. Fromont et al., “Intra renal arterial injection of autologous mesenchymal stem cells in an ovine model in the postischemic kidney,” Nephron Physiology, vol. 107, no. 3, pp. p65–p76, 2007. View at Publisher · View at Google Scholar · View at Scopus
  246. S. K. Nigam, W. Wu, and K. T. Bush, “Organogenesis forum lecture: in vitro kidney development, tissue engineering and systems biology,” Organogenesis, vol. 4, no. 3, pp. 137–143, 2008. View at Google Scholar · View at Scopus
  247. E. Rosines, K. Johkura, X. Zhang et al., “Constructing kidney-like tissues from cells based on programs for organ development: toward a method of in vitro tissue engineering of the kidney,” Tissue Engineering, Part A, vol. 16, no. 8, pp. 2441–2455, 2010. View at Publisher · View at Google Scholar · View at Scopus
  248. E. A. Ross, M. J. Williams, T. Hamazaki et al., “Embryonic stem cells proliferate and differentiate when seeded into kidney scaffolds,” Journal of the American Society of Nephrology, vol. 20, no. 11, pp. 2338–2347, 2009. View at Publisher · View at Google Scholar · View at Scopus
  249. K. H. Nakayama, C. A. Batchelder, C. I. Lee, and A. F. Tarantal, “Decellularized rhesus monkey kidney as a three-dimensional scaffold for renal tissue engineering,” Tissue Engineering Part A, vol. 16, no. 7, pp. 2207–2216, 2010. View at Publisher · View at Google Scholar · View at Scopus
  250. F. Tasnim, R. Deng, M. Hu et al., “Achievements and challenges in bioartificial kidney development,” Fibrogenesis & Tissue Repair, vol. 3, no. 14, 2010. View at Publisher · View at Google Scholar
  251. S. R. Baglio, D. M. Pegtel, and N. Baldini, “Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy,” Frontiers in Physiology, vol. 3, article 359, 2012. View at Publisher · View at Google Scholar · View at Scopus
  252. R. C. Lai, R. W. Y. Yeo, and S. K. Lim, “Mesenchymal stem cell exosomes,” Seminars in Cell & Developmental Biology, vol. 40, pp. 82–88, 2015. View at Google Scholar
  253. S. E. Haynesworth, M. A. Baber, and A. I. Caplan, “Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: Effects of dexamethasone and IL-1α,” Journal of Cellular Physiology, vol. 166, no. 3, pp. 585–592, 1996. View at Publisher · View at Google Scholar · View at Scopus
  254. B. Yu, X. Zhang, and X. Li, “Exosomes derived from mesenchymal stem cells,” International Journal of Molecular Sciences, vol. 15, no. 3, pp. 4142–4157, 2014. View at Publisher · View at Google Scholar · View at Scopus
  255. J. R. Lavoie and M. Rosu-Myles, “Uncovering the secretes of mesenchymal stem cells,” Biochimie, vol. 95, no. 12, pp. 2212–2221, 2013. View at Publisher · View at Google Scholar · View at Scopus
  256. K. C. Vallabhaneni, P. Penfornis, S. Dhule et al., “Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites,” Oncotarget, vol. 6, no. 7, pp. 4953–4967, 2015. View at Google Scholar
  257. T. Kinnaird, E. Stabile, M. S. Burnett et al., “Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms,” Circulation Research, vol. 94, no. 5, pp. 678–685, 2004. View at Publisher · View at Google Scholar · View at Scopus
  258. M. Gnecchi, H. He, N. Noiseux et al., “Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement,” The FASEB Journal, vol. 20, no. 6, pp. 661–669, 2006. View at Publisher · View at Google Scholar · View at Scopus
  259. A. Shabbir, A. Coz, L. Rodriguez, M. Salgado, and E. Badiavas, “Mesenchymal stem cell exosomes induce the proliferation and migration of normal and chronic wound fibroblasts, and enhance angiogenesis in vitro,” Stem Cells and Development, 2015. View at Publisher · View at Google Scholar
  260. Y. Zhang, M. Chopp, Y. Meng et al., “Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury,” Journal of Neurosurgery, vol. 122, no. 4, pp. 856–867, 2015. View at Publisher · View at Google Scholar
  261. Y.-G. Zhu, X.-M. Feng, J. Abbott et al., “Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice,” Stem Cells, vol. 32, no. 1, pp. 116–125, 2014. View at Publisher · View at Google Scholar · View at Scopus
  262. K. Deng, D. L. Lin, B. Hanzlicek et al., “Mesenchymal stem cells and their secretome partially restore nerve and urethral function in a dual muscle and nerve injury stress urinary incontinence model,” The American Journal of Physiology: Renal Physiology, vol. 308, no. 2, pp. F92–F100, 2015. View at Publisher · View at Google Scholar
  263. M. Ono, N. Kosaka, N. Tominaga et al., “Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells,” Science Signaling, vol. 7, no. 332, 2014. View at Publisher · View at Google Scholar
  264. J.-K. Lee, S.-R. Park, B.-K. Jung et al., “Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells,” PLoS ONE, vol. 8, no. 12, Article ID e84256, 2013. View at Publisher · View at Google Scholar · View at Scopus