Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2015, Article ID 819084, 15 pages
http://dx.doi.org/10.1155/2015/819084
Research Article

Human Bone Marrow-Derived Mesenchymal Stromal Cells Differentially Inhibit Cytokine Production by Peripheral Blood Monocytes Subpopulations and Myeloid Dendritic Cells

1Blood and Transplantation Center of Coimbra, Portuguese Institute of the Blood and Transplantation, Quinta da Vinha Moura, São Martinho do Bispo, 3041-861 Coimbra, Portugal
2QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
3Signal Transduction Laboratory, Center of Cellular Biology, SACS and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
4Cell2B Advanced Therapeutics, SA, Biocant Park, Núcleo 04, Lote 4A, 3060-197 Cantanhede, Portugal
5Serviço de Transplantação de Progenitores Hematopoiéticos (UTM), Instituto Português de Oncologia de Lisboa Francisco Gentil, Rua Professor Lima Basto, 1099-023 Lisboa, Portugal

Received 24 February 2015; Accepted 5 April 2015

Academic Editor: Eva Mezey

Copyright © 2015 Paula Laranjeira et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. C. M. Kolf, E. Cho, and R. S. Tuan, “Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation,” Arthritis Research and Therapy, vol. 9, no. 1, article 204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. A. A. Martins, A. Paiva, J. M. Morgado, A. Gomes, and M. L. Pais, “Quantification and immunophenotypic characterization of bone marrow and umbilical cord blood mesenchymal stem cells by multicolor flow cytometry,” Transplantation Proceedings, vol. 41, no. 3, pp. 943–946, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Ribeiro, P. Laranjeira, S. Mendes et al., “Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells,” Stem Cell Research and Therapy, vol. 4, no. 5, article 125, 2013. View at Publisher · View at Google Scholar · View at Scopus
  5. M. D. Griffin, T. Ritter, and B. P. Mahon, “Immunological aspects of allogeneic mesenchymal stem cell therapies,” Human Gene Therapy, vol. 21, no. 12, pp. 1641–1655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. M. Duffy, T. Ritter, R. Ceredig, and M. D. Griffin, “Mesenchymal stem cell effects on T-cell effector pathways,” Stem Cell Research and Therapy, vol. 2, no. 4, article 34, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Krampera, S. Glennie, J. Dyson et al., “Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide,” Blood, vol. 101, no. 9, pp. 3722–3729, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. M. M. Duffy, J. Pindjakova, S. A. Hanley et al., “Mesenchymal stem cell inhibition of T-helper 17 cell-differentiation is triggered by cell-cell contact and mediated by prostaglandin E2 via the EP4 receptor,” European Journal of Immunology, vol. 41, no. 10, pp. 2840–2851, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Carrión, E. Nova, P. Luz, F. Apablaza, and F. Figueroa, “Opposing effect of mesenchymal stem cells on Th1 and Th17 cell polarization according to the state of CD4+ T cell activation,” Immunology Letters, vol. 135, no. 1-2, pp. 10–16, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Luz-Crawford, D. Noël, X. Fernandez et al., “Mesenchymal stem cells repress Th17 molecular program through the PD-1 pathway,” PLoS ONE, vol. 7, no. 9, Article ID e45272, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Laranjeira, M. Pedrosa, S. Pedreiro et al., “Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory and effector T cells,” Stem Cell Research & Therapy, vol. 6, no. 1, article 3, 2015. View at Google Scholar
  12. N. Kadowaki, “Dendritic cells: a conductor of T cell differentiation,” Allergology International, vol. 56, no. 3, pp. 193–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Aggarwal and M. F. Pittenger, “Human mesenchymal stem cells modulate allogeneic immune cell responses,” Blood, vol. 105, no. 4, pp. 1815–1822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Wehner, D. Wehrum, M. Bornhäuser et al., “Mesenchymal stem cells efficiently inhibit the proinflammatory properties of 6-sulfo LacNAc dendritic cells,” Haematologica, vol. 94, no. 8, pp. 1151–1156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Ziegler-Heitbrock, P. Ancuta, S. Crowe et al., “Nomenclature of monocytes and dendritic cells in blood,” Blood, vol. 116, no. 16, pp. e74–e80, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Ziegler-Heitbrock and T. P. J. Hofer, “Toward a refined definition of monocyte subsets,” Frontiers in Immunology, vol. 4, article 23, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Henriques, L. Inês, T. Carvalheiro et al., “Functional characterization of peripheral blood dendritic cells and monocytes in systemic lupus erythematosus,” Rheumatology International, vol. 32, no. 4, pp. 863–869, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Carvalheiro, I. Velada, A. Valado et al., “Phenotypic and functional alterations on inflammatory peripheral blood cells after acute myocardial infarction,” Journal of Cardiovascular Translational Research, vol. 5, no. 3, pp. 309–320, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Almeida, C. Bueno, M. C. Alguero et al., “Extensive characterization of the immunophenotype and pattern of cytokine production by distinct subpopulations of normal human peripheral blood MHC II+/lineage cells,” Clinical and Experimental Immunology, vol. 118, no. 3, pp. 392–401, 1999. View at Publisher · View at Google Scholar
  20. A. J. Kassianos, M. Y. Hardy, X. Ju et al., “Human CD1c (BDCA-1)+ myeloid dendritic cells secrete IL-10 and display an immuno-regulatory phenotype and function in response to Escherichia coli,” European Journal of Immunology, vol. 42, no. 6, pp. 1512–1522, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Tel, G. Schreibelt, S. P. Sittig et al., “Human plasmacytoid dendritic cells efficiently cross-present exogenous Ags to CD8+ T cells despite lowerAg uptake than myeloid dendritic cell subsets,” Blood, vol. 121, no. 3, pp. 459–467, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. O. D. Rosa, W. Dalemans, and E. Lombardo, “Toll-like receptors as modulators of mesenchymal stem cells,” Frontiers in Immunology, vol. 3, article 182, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. O. DelaRosa and E. Lombardo, “Modulation of adult mesenchymal stem cells activity by toll-like receptors: implications on therapeutic potential,” Mediators of Inflammation, vol. 2010, Article ID 865601, 9 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. R. S. Waterman, S. L. Tomchuck, S. L. Henkle, and A. M. Betancourt, “A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype,” PLoS ONE, vol. 5, no. 4, Article ID e10088, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. B. Mei, W. Q. Zhou, X. Y. Zhang, X. J. Wei, and Z. C. Feng, “Lipopolysaccharides shapes the human wharton's jelly-derived mesenchymal stem cells in vitro,” Cellular Physiology and Biochemistry, vol. 32, no. 2, pp. 390–401, 2013. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Romieu-Mourez, M. François, M.-N. Boivin, M. Bouchentouf, D. E. Spaner, and J. Galipeau, “Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype,” The Journal of Immunology, vol. 182, no. 12, pp. 7963–7973, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Liotta, R. Angeli, L. Cosmi et al., “Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing notch signaling,” Stem Cells, vol. 26, no. 1, pp. 279–289, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. A. Ostanin, Y. L. Petrovskii, E. Y. Shevela, and E. R. Chernykh, “Multiplex analysis of cytokines, chemokines, growth factors, MMP-9 and TIMP-1 produced by human bone marrow, adipose tissue, and placental mesenchymal stromal cells,” Bulletin of Experimental Biology and Medicine, vol. 151, no. 1, pp. 133–141, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. M. François, R. Romieu-Mourez, M. Li, and J. Galipeau, “Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation,” Molecular Therapy, vol. 20, no. 1, pp. 187–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. C. A. Opitz, U. M. Litzenburger, C. Lutz et al., “Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine-2,3-dioxygenase-1 via Interferon-b and protein kinase R,” Stem Cells, vol. 27, no. 4, pp. 909–919, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. P. R. Crisostomo, Y. Wang, T. A. Markel, M. Wang, T. Lahm, and D. R. Meldrum, “Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism,” The American Journal of Physiology—Cell Physiology, vol. 294, no. 3, pp. C675–C682, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Giuliani, A. Bennaceur-Griscelli, A. Nanbakhsh et al., “TLR ligands stimulation protects MSC from NK killing,” Stem Cells, vol. 32, no. 1, pp. 290–300, 2014. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Böcker, D. Docheva, W. C. Prall et al., “IKK-2 is required for TNF-α-induced invasion and proliferation of human mesenchymal stem cells,” Journal of Molecular Medicine, vol. 86, no. 10, pp. 1183–1192, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. Q. Xiao, S.-K. Wang, H. Tian et al., “TNF-α increases bone marrow mesenchymal stem cell migration to ischemic tissues,” Cell Biochemistry and Biophysics, vol. 62, no. 3, pp. 409–414, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Ren, X. Zhao, L. Zhang et al., “Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression,” Journal of Immunology, vol. 184, no. 5, pp. 2321–2328, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Ghannam, J. Pène, G. Torcy-Moquet, C. Jorgensen, and H. Yssel, “Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype,” The Journal of Immunology, vol. 185, no. 1, pp. 302–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Avila and C. Gonzalez-Espinosa, “Signaling through Toll-like receptor 4 and mast cell-dependent innate immunity responses,” IUBMB life, vol. 63, no. 10, pp. 873–880, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. C.-A. Lim, F. Yao, J. J.-Y. Wong et al., “Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-κB upon TLR4 activation,” Molecular Cell, vol. 27, no. 4, pp. 622–635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. S.-N. Li, W. Wang, S.-P. Fu et al., “IL-21 modulates release of proinflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways,” Mediators of Inflammation, vol. 2013, Article ID 548073, 12 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Hu, J. Chen, L. Wang, and L. B. Ivashkiv, “Crosstalk among Jak-STAT, Toll-like receptor, and ITAM-dependent pathways in macrophage activation,” Journal of Leukocyte Biology, vol. 82, no. 2, pp. 237–243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Kawai and S. Akira, “TLR signaling,” Cell Death & Differentiation, vol. 13, no. 5, pp. 816–825, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Bernatoniene, Q. Zhang, S. Dogan, T. J. Mitchell, J. C. Paton, and A. Finn, “Induction of CC and CXC chemokines in human antigen-presenting dendritic cells by the pneumococcal proteins pneumolysin and CbpA, and the role played by toll-like receptor 4, NF-κB, and mitogen-activated protein kinases,” Journal of Infectious Diseases, vol. 198, no. 12, pp. 1823–1833, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. M. J. Smolinska, T. H. Page, A. M. Urbaniak, B. E. Mutch, and N. J. Horwood, “Hck tyrosine kinase regulates TLR4-induced TNF and IL-6 production via AP-1,” Journal of Immunology, vol. 187, no. 11, pp. 6043–6051, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. K. Nakamichi, S. Inoue, T. Takasaki, K. Morimoto, and I. Kurane, “Rabies virus stimulates nitric oxide production and CXC chemokine ligand 10 expression in macrophages through activation of extracellular signal-regulated kinases 1 and 2,” Journal of Virology, vol. 78, no. 17, pp. 9376–9388, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. K.-H. Huang, C.-H. Wang, K.-Y. Lee, S.-M. Lin, C.-H. Lin, and H.-P. Kuo, “NF-kappaB repressing factor inhibits chemokine synthesis by peripheral blood mononuclear cells and alveolar macrophages in active pulmonary tuberculosis,” PLoS ONE, vol. 8, no. 11, Article ID e77789, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. K. A. Sikora, N. Fall, S. Thornton, and A. A. Grom, “The limited role of interferon-γ in systemic juvenile idiopathic arthritis cannot be explained by cellular hyporesponsiveness,” Arthritis and Rheumatism, vol. 64, no. 11, pp. 3799–3808, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Bronger, S. Kraeft, U. Schwarz-Boeger et al., “Modulation of CXCR3 ligand secretion by prostaglandin E 2 and cyclooxygenase inhibitors in human breast cancer,” Breast Cancer Research, vol. 14, no. 1, article R30, 2012. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Frasca and R. Lande, “Overlapping, additive and counterregulatory effects of type II and I interferons on myeloid dendritic cell functions,” The Scientific World Journal, vol. 11, pp. 2071–2090, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Gualde and H. Harizi, “Prostanoids and their receptors that modulate dendritic cell-mediated immunity,” Immunology and Cell Biology, vol. 82, no. 4, pp. 353–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Harizi and N. Gualde, “Pivotal role of PGE2 and IL-10 in the cross-regulation of dendritic cell-derived inflammatory mediators,” Cellular & Molecular Immunology, vol. 3, no. 4, pp. 271–277, 2006. View at Google Scholar · View at Scopus
  52. K. K. Meja, P. J. Barnes, and M. A. Giembycz, “Characterization of the prostanoid receptor(s) on human blood monocytes at which prostaglandin E2 inhibits lipopolysaccharide-induced tumour necrosis factor-α generation,” British Journal of Pharmacology, vol. 122, no. 1, pp. 149–157, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. W.-S. Lee, S.-M. Lee, M.-K. Kim et al., “The tryptophan metabolite 3-hydroxyanthranilic acid suppresses T cell responses by inhibiting dendritic cell activation,” International Immunopharmacology, vol. 17, no. 3, pp. 721–726, 2013. View at Publisher · View at Google Scholar · View at Scopus
  54. M. E. Olah and C. C. Caldwell, “Adenosine receptors and mammalian toll-like receptors: synergism in macrophages,” Molecular Interventions, vol. 3, no. 7, pp. 370–374, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. Q. Zhang, C. Wang, Z. Liu et al., “Notch signal suppresses toll-like receptor-triggered inflammatory responses in macrophages by inhibiting extracellular signal-regulated kinase 1/2-mediated nuclear factor κB activation,” The Journal of Biological Chemistry, vol. 287, no. 9, pp. 6208–6217, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Bruckner, D. Dickel, E. Singer, and D. F. Legler, “Distinct modulation of chemokine expression patterns in human monocyte-derived dendritic cells by prostaglandin E(2),” Cellular Immunology, vol. 276, no. 1-2, pp. 52–58, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Bruckner, D. Dickel, E. Singer, and D. F. Legler, “Converse regulation of CCR7-driven human dendritic cell migration by prostaglandin E2 and liver X receptor activation,” European Journal of Immunology, vol. 42, no. 11, pp. 2949–2958, 2012. View at Publisher · View at Google Scholar · View at Scopus
  58. G. M. Coudriet, J. He, M. Trucco, W. M. Mars, and J. D. Piganelli, “Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases,” PLoS ONE, vol. 5, no. 11, Article ID e15384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. U. M. Litzenburger, C. A. Opitz, F. Sahm et al., “Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR,” Oncotarget, vol. 5, no. 4, pp. 1038–1051, 2014. View at Google Scholar · View at Scopus
  60. A. McIlroy, G. Caron, S. Blanchard et al., “Histamine and prostaglandin E2 up-regulate the production of Th2-attracting chemokines (CCL17 and CCL22) and down-regulate IFN-γ-induced CXCL10 production by immature human dendritic cells,” Immunology, vol. 117, no. 4, pp. 507–516, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. K. Oshikawa, H. Yamasawa, and Y. Sugiyama, “Human lung fibroblasts inhibit macrophage inflammatory protein-1α production by lipopolysaccharide-stimulated macrophages,” Biochemical and Biophysical Research Communications, vol. 312, no. 3, pp. 650–655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. N. Janabi, I. Hau, and M. Tardieu, “Negative feedback between prostaglandin and α- and β-chemokine synthesis in human microglial cells and astrocytes,” The Journal of Immunology, vol. 162, no. 3, pp. 1701–1706, 1999. View at Google Scholar · View at Scopus
  63. R. Gong, A. Rifai, Y. Ge, S. Chen, and L. D. Dworkin, “Hepatocyte growth factor suppresses proinflammatory NFκB activation through GSK3β inactivation in renal tubular epithelial cells,” The Journal of Biological Chemistry, vol. 283, no. 12, pp. 7401–7410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Giannopoulou, C. Dai, X. Tan, X. Wen, G. K. Michalopoulos, and Y. Liu, “Hepatocyte growth factor exerts its anti-inflammatory action by disrupting nuclear factor-kappaB signaling,” The American Journal of Pathology, vol. 173, no. 1, pp. 30–41, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Frank, H. Kämpfer, C. Wetzler, B. Stallmeyer, and J. Pfeilschifter, “Large induction of the chemotactic cytokine RANTES during cutaneous wound repair: a regulatory role for nitric oxide in keratinocyte-derived RANTES expression,” Biochemical Journal, vol. 347, no. 1, pp. 265–273, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. K. Tanese, E. A. Grimm, and S. Ekmekcioglu, “The role of melanoma tumor-derived nitric oxide in the tumor inflammatory microenvironment: its impact on the chemokine expression profile, including suppression of CXCL10,” International Journal of Cancer, vol. 131, no. 4, pp. 891–901, 2012. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Jing, J.-H. Yen, and D. Ganea, “A novel signaling pathway mediates the inhibition of CCL3/4 expression by prostaglandin E2,” The Journal of Biological Chemistry, vol. 279, no. 53, pp. 55176–55186, 2004. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Kubo, H. K. Takahashi, M. Takei et al., “E-prostanoid (EP)2/EP4 receptor-dependent maturation of human monocyte-derived dendritic cells and induction of helper T2 polarization,” Journal of Pharmacology and Experimental Therapeutics, vol. 309, no. 3, pp. 1213–1220, 2004. View at Publisher · View at Google Scholar · View at Scopus
  69. C. Rieser, G. Böck, H. Klocker, G. Bartsch, and M. Thurnher, “Prostaglandin E2 and tumor necrosis factor α cooperate to activate human dendritic cells: synergistic activation of interleukin 12 production,” Journal of Experimental Medicine, vol. 186, no. 9, pp. 1603–1608, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. M. A. Allaire, B. Tanné, S. C. Côté, and N. Dumais, “Prostaglandin E2 does not modulate CCR7 expression and functionality after differentiation of blood monocytes into macrophages,” International Journal of Inflammation, vol. 2013, Article ID 918016, 11 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  71. D. F. Legler, P. Krause, E. Scandella, E. Singer, and M. Groettrup, “Prostaglandin E2 is generally required for human dendritic cell migration and exerts its effect via EP2 and EP4 receptors,” The Journal of Immunology, vol. 176, no. 2, pp. 966–973, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Scandella, Y. Men, D. F. Legler et al., “CCL19/CCL21-triggered signal transduction and migration of dendritic cells requires prostaglandin E2,” Blood, vol. 103, no. 5, pp. 1595–1601, 2004. View at Publisher · View at Google Scholar · View at Scopus
  73. H. S. Adler, A. Simon, E. Graulich et al., “Neuronal nitric oxide synthase modulates maturation of human dendritic cells,” Journal of Immunology, vol. 184, no. 11, pp. 6025–6034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. E. Liu, H. K. W. Law, and Y.-L. Lau, “Insulin-like growth factor I promotes maturation and inhibits apoptosis of immature cord blood monocyte-derived dendritic cells through MEK and PI 3-kinase pathways,” Pediatric Research, vol. 54, no. 6, pp. 919–925, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. M. H. Abumaree, M. A. Al Jumah, B. Kalionis et al., “Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages,” Stem Cell Reviews and Reports, vol. 9, no. 5, pp. 620–641, 2013. View at Publisher · View at Google Scholar · View at Scopus
  76. S. Adutler-Lieber, T. Ben-Mordechai, N. Naftali-Shani et al., “Human macrophage regulation via interaction with cardiac adipose tissue-derived mesenchymal stromal cells,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 18, no. 1, pp. 78–86, 2013. View at Publisher · View at Google Scholar · View at Scopus
  77. F. Dazzi, L. Lopes, and L. Weng, “Mesenchymal stromal cells: a key player in ‘innate tolerance’?” Immunology, vol. 137, no. 3, pp. 206–213, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Kim and P. Hematti, “Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages,” Experimental Hematology, vol. 37, no. 12, pp. 1445–1453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. I. Hof-Nahor, L. Leshansky, S. Shivtiel et al., “Human mesenchymal stem cells shift CD8+ T cells towards a suppressive phenotype by inducing tolerogenic monocytes,” Journal of Cell Science, vol. 125, part 19, pp. 4640–4650, 2012. View at Publisher · View at Google Scholar · View at Scopus
  80. K. Németh, A. Leelahavanichkul, P. S. T. Yuen et al., “Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production,” Nature Medicine, vol. 15, no. 1, pp. 42–49, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Magatti, S. de Munari, E. Vertua et al., “Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes,” Cell Transplantation, vol. 18, no. 8, pp. 899–914, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. S. M. Melief, S. B. Geutskens, W. E. Fibbe, and H. Roelofs, “Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6,” Haematologica, vol. 98, no. 6, pp. 888–895, 2013. View at Publisher · View at Google Scholar · View at Scopus
  83. X.-X. Jiang, Y. Zhang, B. Liu et al., “Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells,” Blood, vol. 105, no. 10, pp. 4120–4126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. E. Ivanova-Todorova, I. Bochev, M. Mourdjeva et al., “Adipose tissue-derived mesenchymal stem cells are more potent suppressors of dendritic cells differentiation compared to bone marrow-derived mesenchymal stem cells,” Immunology Letters, vol. 126, no. 1-2, pp. 37–42, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. A. J. Nauta, A. B. Kruisselbrink, E. Lurvink, R. Willemze, and W. E. Fibbe, “Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells,” Journal of Immunology, vol. 177, no. 4, pp. 2080–2087, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Saeidi, A. Masoud, Y. Shakiba et al., “Immunomodulatory effects of human umbilical cord wharton's Jelly-Derived mesenchymal stem cells on differentiation, maturation and endocytosis of monocyte-derived dendritic cells,” Iranian Journal of Allergy, Asthma and Immunology, vol. 12, no. 1, pp. 37–49, 2013. View at Google Scholar · View at Scopus
  87. W. Zhang, W. Ge, C. Li et al., “Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells,” Stem Cells and Development, vol. 13, no. 3, pp. 263–271, 2004. View at Publisher · View at Google Scholar · View at Scopus
  88. Y.-J. Jung, S.-Y. Ju, E.-S. Yoo et al., “MSC-DC interactions: MSC inhibit maturation and migration of BM-derived DC,” Cytotherapy, vol. 9, no. 5, pp. 451–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  89. H. J. Lee, J. H. Ko, A. Y. Ko, M. K. Kim, W. R. Wee, and J. Y. Oh, “Intravenous infusion of mesenchymal stem/stromal cells decreased CCR7+ antigen presenting cells in mice with corneal allotransplantation,” Current Eye Research, vol. 39, no. 8, pp. 780–789, 2014. View at Publisher · View at Google Scholar
  90. L. C. J. V. D. Berk, B. J. H. Jansen, K. G. C. Siebers-Vermeulen et al., “Toll-like receptor triggering in cord blood mesenchymal stem cells,” Journal of Cellular and Molecular Medicine, vol. 13, no. 9B, pp. 3415–3426, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. T. Yi, D.-S. Lee, M.-S. Jeon, S. W. Kwon, and S. U. Song, “Gene expression profile reveals that STAT2 is involved in the immunosuppressive function of human bone marrow-derived mesenchymal stem cells,” Gene, vol. 497, no. 2, pp. 131–139, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. L. Shi, J.-S. Wang, X.-M. Liu, X.-Y. Hu, and Q. Fang, “Upregulated functional expression of Toll like receptor 4 in mesenchymal stem cells induced by lipopolysaccharide,” Chinese Medical Journal, vol. 120, no. 19, pp. 1685–1688, 2007. View at Google Scholar · View at Scopus