Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2016 (2016), Article ID 1929536, 11 pages
http://dx.doi.org/10.1155/2016/1929536
Research Article

Exosomes from Human Umbilical Cord Mesenchymal Stem Cells: Identification, Purification, and Biological Characteristics

1Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
2The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu 212000, China

Received 18 June 2016; Revised 19 July 2016; Accepted 20 July 2016

Academic Editor: Andrea Ballini

Copyright © 2016 Bin Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Johnstone, M. Adam, J. R. Hammond, L. Orr, and C. Turbide, “Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes),” The Journal of Biological Chemistry, vol. 262, no. 19, pp. 9412–9420, 1987. View at Google Scholar · View at Scopus
  2. B.-T. Pan, K. Teng, C. Wu, M. Adam, and R. M. Johnstone, “Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes,” Journal of Cell Biology, vol. 101, no. 3, pp. 942–948, 1985. View at Publisher · View at Google Scholar · View at Scopus
  3. B.-T. Pan and R. M. Johnstone, “Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor,” Cell, vol. 33, no. 3, pp. 967–978, 1983. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Chaput, J. Taïeb, N. E. C. Schartz, F. André, E. Angevin, and L. Zitvogel, “Exosome-based immunotherapy,” Cancer Immunology, Immunotherapy, vol. 53, no. 3, pp. 234–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Théry, L. Zitvogel, and S. Amigorena, “Exosomes: composition, biogenesis and function,” Nature Reviews Immunology, vol. 2, no. 8, pp. 569–579, 2002. View at Google Scholar · View at Scopus
  6. G. Raposo, H. W. Nijman, W. Stoorvogel et al., “B lymphocytes secrete antigen-presenting vesicles,” The Journal of Experimental Medicine, vol. 183, no. 3, pp. 1161–1172, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Zitvogel, A. Regnault, A. Lozier et al., “Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes,” Nature Medicine, vol. 4, no. 5, pp. 594–600, 1998. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Théry, A. Regnault, J. Garin et al., “Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73,” The Journal of Cell Biology, vol. 147, no. 3, pp. 599–610, 1999. View at Publisher · View at Google Scholar · View at Scopus
  9. N. Blanchard, D. Lankar, F. Faure et al., “TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex,” Journal of Immunology, vol. 168, no. 7, pp. 3235–3241, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Wolfers, A. Lozier, G. Raposo et al., “Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming,” Nature Medicine, vol. 7, no. 3, pp. 297–303, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Andre, N. E. C. Schartz, M. Movassagh et al., “Malignant effusions and immunogenic tumour-derived exosomes,” The Lancet, vol. 360, no. 9329, pp. 295–305, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. M.-P. Caby, D. Lankar, C. Vincendeau-Scherrer, G. Raposo, and C. Bonnerot, “Exosomal-like vesicles are present in human blood plasma,” International Immunology, vol. 17, no. 7, pp. 879–887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Pisitkun, R.-F. Shen, and M. A. Knepper, “Identification and proteomic profiling of exosomes in human urine,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 36, pp. 13368–13373, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Palanisamy, S. Sharma, A. Deshpande, H. Zhou, J. Gimzewski, and D. T. Wong, “Nanostructural and transcriptomic analyses of human saliva derived exosomes,” PLoS ONE, vol. 5, no. 1, article e8577, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Admyre, S. M. Johansson, K. R. Qazi et al., “Exosomes with immune modulatory features are present in human breast milk,” The Journal of Immunology, vol. 179, no. 3, pp. 1969–1978, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Admyre, J. Grunewald, J. Thyberg et al., “Exosomes with major histocompatibility complex class II and co-stimulatory molecules are present in human BAL fluid,” The European Respiratory Journal, vol. 22, no. 4, pp. 578–583, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Olver and M. Vidal, “Proteomic analysis of secreted exosomes,” Sub-Cellular Biochemistry, vol. 43, pp. 99–131, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Keller, M. P. Sanderson, A. Stoeck, and P. Altevogt, “Exosomes: from biogenesis and secretion to biological function,” Immunology Letters, vol. 107, no. 2, pp. 102–108, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee, and J. O. Lötvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. W. Stoorvogel, M. J. Kleijmeer, H. J. Geuze, and G. Raposo, “The biogenesis and functions of exosomes,” Traffic, vol. 3, no. 5, pp. 321–330, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Simons and G. Raposo, “Exosomes—vesicular carriers for intercellular communication,” Current Opinion in Cell Biology, vol. 21, no. 4, pp. 575–581, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Pap, É. Pállinger, M. Pásztói, and A. Falus, “Highlights of a new type of intercellular communication: microvesicle-based information transfer,” Inflammation Research, vol. 58, no. 1, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. T. S. Chen, R. C. Lai, M. M. Lee, A. B. H. Choo, C. N. Lee, and S. K. Lim, “Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs,” Nucleic Acids Research, vol. 38, no. 1, pp. 215–224, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. W. Koh, C. T. Sheng, B. Tan et al., “Analysis of deep sequencing microRNA expression profile from human embryonic stem cells derived mesenchymal stem cells reveals possible role of let-7 microRNA family in downstream targeting of hepatic nuclear factor 4 alpha,” BMC Genomics, vol. 11, supplement 1, article S6, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Sun, D. Wang, J. Liang et al., “Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus,” Arthritis & Rheumatism, vol. 62, no. 8, pp. 2467–2475, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Chen, H. Qian, W. Zhu et al., “Hepatocyte growth factor modification promotes the amelioration effects of human umbilical cord mesenchymal stem cells on rat acute kidney injury,” Stem Cells and Development, vol. 20, no. 1, pp. 103–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Cao, H. Qian, W. Xu et al., “Mesenchymal stem cells derived from human umbilical cord ameliorate ischemia/reperfusion-induced acute renal failure in rats,” Biotechnology Letters, vol. 32, no. 5, pp. 725–732, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Yan, W. Xu, H. Qian et al., “Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo,” Liver International, vol. 29, no. 3, pp. 356–365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Li, Y. Yan, B. Wang et al., “Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis,” Stem Cells and Development, vol. 22, no. 6, pp. 845–854, 2013. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Zhang, M. Wang, A. Gong et al., “HucMSc-exosome mediated-Wnt4 signaling is required for cutaneous wound healing,” Stem Cells, vol. 33, no. 7, pp. 2158–2168, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. B. Zhang, X. Wu, X. Zhang et al., “Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway,” Stem Cells Translational Medicine, vol. 4, no. 5, pp. 513–522, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Zhou, H. Xu, W. Xu et al., “Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro,” Stem Cell Research & Therapy, vol. 4, no. 2, article 34, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Zhao, X. Sun, W. Cao et al., “Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury,” Stem Cells International, vol. 2015, Article ID 761643, 12 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Qiao, W. Xu, W. Zhu et al., “Human mesenchymal stem cells isolated from the umbilical cord,” Cell Biology International, vol. 32, no. 1, pp. 8–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Ponta, M.-L. Pfennig-Yeh, E. F. Wagner, M. Schweiger, and P. Herrlich, “Radiation sensitivity of messenger RNA,” Molecular & General Genetics, vol. 175, no. 1, pp. 13–17, 1979. View at Publisher · View at Google Scholar · View at Scopus
  36. E. J. Wurtmann and S. L. Wolin, “RNA under attack: cellular handling of RNA damage,” Critical Reviews in Biochemistry and Molecular Biology, vol. 44, no. 1, pp. 34–49, 2009. View at Publisher · View at Google Scholar
  37. G. Camussi, M. C. Deregibus, and C. Tetta, “Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information,” Current Opinion in Nephrology and Hypertension, vol. 19, no. 1, pp. 7–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Eldh, K. Ekström, H. Valadi et al., “Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA,” PLoS ONE, vol. 5, no. 12, Article ID e15353, 2010. View at Google Scholar · View at Scopus
  39. W. Zhu, L. Huang, Y. Li et al., “Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo,” Cancer Letters, vol. 315, no. 1, pp. 28–37, 2012. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Admyre, S. M. Johansson, S. Paulie, and S. Gabrielsson, “Direct exosome stimulation of peripheral human T cells detected by ELISPOT,” European Journal of Immunology, vol. 36, no. 7, pp. 1772–1781, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Karlsson, S. Lundin, U. Dahlgren, H. Kahu, I. Pettersson, and E. Telemo, “‘Tolerosomes’ are produced by intestinal epithelial cells,” European Journal of Immunology, vol. 31, no. 10, pp. 2892–2900, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. A. Clayton and Z. Tabi, “Exosomes and the MICA-NKG2D system in cancer,” Blood Cells, Molecules, & Diseases, vol. 34, no. 3, pp. 206–213, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Takeda, I. Shirato, M. Kobayashi, and H. Endou, “Hydrogen peroxide induces necrosis, apoptosis, oncosis and apoptotic oncosis of mouse terminal proximal straight tubule cells,” Nephron, vol. 81, no. 2, pp. 234–238, 1999. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Maria Spaggiari and L. Moretta, “Cellular and molecular interactions of mesenchymal stem cells in innate immunity,” Immunology and Cell Biology, vol. 91, no. 1, pp. 27–31, 2013. View at Publisher · View at Google Scholar · View at Scopus
  45. T. R. Doeppner, J. Herz, A. Görgens et al., “Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression,” Stem Cells Translational Medicine, vol. 4, no. 10, pp. 1131–1143, 2015. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Herrero and J. A. Perez-Simon, “Immunomodulatory effect of mesenchymal stem cells,” Brazilian Journal of Medical and Biological Research, vol. 43, no. 5, pp. 425–430, 2010. View at Google Scholar
  47. A. Bartholomew, C. Sturgeon, M. Siatskas et al., “Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo,” Experimental Hematology, vol. 30, no. 1, pp. 42–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Di Nicola, C. Carlo-Stella, M. Magni et al., “Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli,” Blood, vol. 99, no. 10, pp. 3838–3843, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Glennie, I. Soeiro, P. J. Dyson, E. W.-F. Lam, and F. Dazzi, “Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells,” Blood, vol. 105, no. 7, pp. 2821–2827, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. A. Corcione, F. Benvenuto, E. Ferretti et al., “Human mesenchymal stem cells modulate B-cell functions,” Blood, vol. 107, no. 1, pp. 367–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. K. English and B. P. Mahon, “Allogeneic mesenchymal stem cells: agents of immune modulation,” Journal of Cellular Biochemistry, vol. 112, no. 8, pp. 1963–1968, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. M. J. Rahman, D. Regn, R. Bashratyan, and Y. D. Dai, “Exosomes released by islet-derived mesenchymal stem cells trigger autoimmune responses in NOD mice,” Diabetes, vol. 63, no. 3, pp. 1008–1020, 2014. View at Publisher · View at Google Scholar · View at Scopus
  53. W. Chen, Y. Huang, J. Han et al., “Immunomodulatory effects of mesenchymal stromal cells-derived exosome,” Immunologic Research, vol. 64, no. 4, pp. 831–840, 2016. View at Publisher · View at Google Scholar
  54. B. Zhang, Y. Yin, R. C. Lai, S. S. Tan, A. B. H. Choo, and S. K. Lim, “Mesenchymal stem cells secrete immunologically active exosomes,” Stem Cells and Development, vol. 23, no. 11, pp. 1233–1244, 2014. View at Publisher · View at Google Scholar · View at Scopus