Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2016, Article ID 1934270, 12 pages
http://dx.doi.org/10.1155/2016/1934270
Research Article

Enhanced Osteogenic and Vasculogenic Differentiation Potential of Human Adipose Stem Cells on Biphasic Calcium Phosphate Scaffolds in Fibrin Gels

1Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, Netherlands
2Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, Netherlands

Received 1 March 2016; Revised 6 June 2016; Accepted 27 June 2016

Academic Editor: Susan Liao

Copyright © 2016 Fransisca A. S. van Esterik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

For bone tissue engineering synthetic biphasic calcium phosphate (BCP) with a hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ratio of 60/40 (BCP60/40) is successfully clinically applied, but the high percentage of HA may hamper efficient scaffold remodelling. Whether BCP with a lower HA/β-TCP ratio (BCP20/80) is more desirable is still unclear. Vascular development is needed before osteogenesis can occur. We aimed to test the osteogenic and/or vasculogenic differentiation potential as well as degradation of composites consisting of human adipose stem cells (ASCs) seeded on BCP60/40 or BCP20/80 incorporated in fibrin gels that trigger neovascularization for bone regeneration. ASC attachment to BCP60/40 and BCP20/80 within 30 min was similar (>93%). After 11 days of culture BCP20/80-based composites showed increased alkaline phosphatase activity and DMP1 gene expression, but not RUNX2 and osteonectin expression, compared to BCP60/40-based composites. BCP20/80-based composites also showed enhanced expression of the vasculogenic markers CD31 and VEGF189, but not VEGF165 and endothelin-1. Collagen-1 and collagen-3 expression was similar in both composites. Fibrin degradation was increased in BCP20/80-based composites at day 7. In conclusion, BCP20/80-based composites showed enhanced osteogenic and vasculogenic differentiation potential compared to BCP60/40-based composites in vitro, suggesting that BCP20/80-based composites might be more promising for in vivo bone augmentation than BCP60/40-based composites.