Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2016, Article ID 4304916, 11 pages
http://dx.doi.org/10.1155/2016/4304916
Research Article

Direct Reprogramming of Mouse Fibroblasts to Neural Stem Cells by Small Molecules

1School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, SA 5000, Australia
2Department of Human Physiology and Centre for Neuroscience, Flinders University of South Australia, P.O. Box 2100, Adelaide, SA 5001, Australia

Received 14 April 2015; Accepted 18 August 2015

Academic Editor: Libera Berghella

Copyright © 2016 Yan-Chuang Han et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Although it is possible to generate neural stem cells (NSC) from somatic cells by reprogramming technologies with transcription factors, clinical utilization of patient-specific NSC for the treatment of human diseases remains elusive. The risk hurdles are associated with viral transduction vectors induced mutagenesis, tumor formation from undifferentiated stem cells, and transcription factors-induced genomic instability. Here we describe a viral vector-free and more efficient method to induce mouse fibroblasts into NSC using small molecules. The small molecule-induced neural stem (SMINS) cells closely resemble NSC in morphology, gene expression patterns, self-renewal, excitability, and multipotency. Furthermore, the SMINS cells are able to differentiate into astrocytes, functional neurons, and oligodendrocytes in vitro and in vivo. Thus, we have established a novel way to efficiently induce neural stem cells (iNSC) from fibroblasts using only small molecules without altering the genome. Such chemical induction removes the risks associated with current techniques such as the use of viral vectors or the induction of oncogenic factors. This technique may, therefore, enable NSC to be utilized in various applications within clinical medicine.