Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2017, Article ID 1653254, 13 pages
https://doi.org/10.1155/2017/1653254
Review Article

Trophic Activity and Phenotype of Adipose Tissue-Derived Mesenchymal Stem Cells as a Background of Their Regenerative Potential

1Laboratory of Stem Cells’ Biology, Department of Human Immunology, Chair of Preclinical Studies, Institute of Experimental and Clinical Medicine, Faculty of Medicine, University of Rzeszow, Ul. Kopisto 2a, 35-310 Rzeszow, Poland
2Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, Ul. Warzywna 1a, 35-310 Rzeszow, Poland
3Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo 104-0045, Japan

Correspondence should be addressed to Agnieszka Banaś-Ząbczyk; lp.2o@sanabakzseinga

Received 10 February 2017; Revised 28 April 2017; Accepted 14 May 2017; Published 5 July 2017

Academic Editor: Mustapha Najimi

Copyright © 2017 Beata Kocan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. P. Barry and J. M. Murphy, “Mesenchymal stem cells: clinical applications and biological characterization,” The International Journal of Biochemistry & Cell Biology, vol. 36, no. 4, pp. 568–584, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002. View at Google Scholar
  3. B. A. Bunnell, M. Flaat, C. Gagliardi, B. Patel, and C. Ripoll, “Adipose-derived stem cells: isolation, expansion and differentiation,” Methods, vol. 45, no. 2, pp. 115–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Thomson, J. Itskovitz, S. S. Shapiro et al., “Embryonic stem cell lines derived from human blastocysts,” Science, vol. 282, no. 5391, pp. 1145–1147, 1998. View at Publisher · View at Google Scholar
  5. P. S. In’t Anker, S. A. Scherjon, C. Kleijburg-van der Keur et al., “Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta,” Stem Cells, vol. 22, no. 7, pp. 1338–1345, 2004. View at Google Scholar
  6. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Robinton and G. Q. Daley, “The promise of induced pluripotent stem cells in research and therapy,” Nature, vol. 481, no. 7381, pp. 295–305, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Wagner, F. Wein, A. Seckinger et al., “Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood,” Experimental Hematology, vol. 33, no. 11, pp. 1402–1416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. K. Fraser, M. Zhu, I. Wulur, and Z. Alfonso, “Adipose-derived stem cells,” Methods in Molecular Biology, vol. 449, pp. 59–67, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Nombela-Arrieta, J. Ritz, and L. E. Silberstein, “The elusive nature and function of mesenchymal stem cells,” Nature Reviews. Molecular Cell Biology, vol. 12, no. 2, pp. 126–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Oswald, S. Boxberger, B. Jørgensen et al., “Mesenchymal stem cells can be differentiated into endothelial cells in vitro,” Stem Cells, vol. 22, no. 3, pp. 377–384, 2004. View at Publisher · View at Google Scholar
  13. S. Makino, K. Fukuda, S. Miyoshi et al., “Cardiomyocytes can be generated from marrow stromal cells in vitro,” The Journal of Clinical Investigation, vol. 103, no. 5, pp. 697–705, 1999. View at Publisher · View at Google Scholar
  14. S. Snykers, J. De Kock, V. Rogiers, and T. Vanhaecke, “In vitro differentiation of embryonic and adult stem cells into hepatocytes: state of the art,” Stem Cells, vol. 27, no. 3, pp. 577–605, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Arthur, G. Rychkov, S. Shi, S. A. Koblar, and S. Gronthos, “Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues,” Stem Cells, vol. 26, no. 7, pp. 1787–1795, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Alvarez-Dolado, R. Pardal, J. M. Garcia-Verdugo et al., “Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes,” Nature, vol. 425, no. 6961, pp. 968–973, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. R. H. Lee, B. Kim, I. Choi et al., “Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue,” Cellular Physiology and Biochemistry, vol. 14, no. 4–6, pp. 311–324, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kern, H. Eichler, J. Stoeve, H. Klüter, and K. Bieback, “Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue,” Stem Cells, vol. 24, no. 5, pp. 1294–1301, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Gronthos, D. M. Franklin, H. A. Leddy, P. G. Robey, R. W. Storms, and J. M. Gimble, “Surface protein characterization of human adipose tissue-derived stromal cells,” Journal of Cellular Physiology, vol. 189, no. 1, pp. 54–63, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. B. M. Strem, K. C. Hicok, M. Zhu et al., “Multipotential differentiation of adipose tissue-derived stem cells,” The Keio Journal of Medicine, vol. 54, no. 3, pp. 132–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Schäffler and C. Büchler, “Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies,” Stem Cells, vol. 25, no. 4, pp. 818–827, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Prunet-Marcassus, B. Cousin, D. Caton, M. André, L. Pénicaud, and L. Casteilla, “From heterogeneity to plasticity in adipose tissues: site-specific differences,” Experimental Cell Research, vol. 312, no. 6, pp. 727–736, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Gesta, Y. H. Tseng, and C. R. Kahn, “Developmental origin of fat: tracking obesity to its source,” Cell, vol. 131, no. 2, pp. 242–256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Nedergaard, T. Bengtsson, and B. Cannon, “Unexpected evidence for active brown adipose tissue in adult humans,” American Journal of Physiology. Endocrinology and Metabolism, vol. 293, no. 2, pp. E444–E452, 2007. View at Google Scholar
  26. B. Kim, B. Lee, M. K. Kim et al., “Gene expression profiles of human subcutaneous and visceral adipose-derived stem cells,” Cell Biochemistry and Function, vol. 34, no. 8, pp. 563–571, 2016. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Di Taranto, C. Cicione, G. Visconti et al., “Qualitative and quantitative differences of adipose-derived stromal cells from superficial and deep subcutaneous lipoaspirates: a matter of fat,” Cytotherapy, vol. 17, no. 8, pp. 1076–1089, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. J. K. Fraser, I. Wulur, Z. Alfonso, and M. H. Hedrick, “Fat tissue: an underappreciated source of stem cells for biotechnology,” Trends in Biotechnology, vol. 24, no. 4, pp. 150–154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. D. A. De Ugarte, K. Morizono, A. Elbarbary et al., “Comparison of multi-lineage cells from human adipose tissue and bone marrow,” Cells, Tissues, Organs, vol. 174, no. 3, pp. 101–109, 2003. View at Publisher · View at Google Scholar
  30. M. Vermette, V. Trottier, V. Ménard, L. Saint-Pierre, A. Roy, and J. Fradette, “Production of a new tissue-engineered adipose substitute from human adipose-derived stromal cells,” Biomaterials, vol. 28, no. 18, pp. 2850–2860, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. J. Oedayrajsingh-Varma, S. M. van Ham, M. Knippenberg et al., “Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure,” Cytotherapy, vol. 8, no. 2, pp. 166–177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Alharbi, C. Opländer, S. Almakadi, A. Fritz, M. Vogt, and N. Pallua, “Conventional vs. micro-fat harvesting: how fat harvesting technique affects tissue-engineering approaches using adipose tissue-derived stem/stromal cells,” Journal of Plastic, Reconstructive & Aesthetic Surgery, vol. 66, no. 9, pp. 1271–1278, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. S. R. Coleman, “Structural fat grafts: the ideal filler?” Clinics in Plastic Surgery, vol. 28, no. 1, pp. 111–119, 2001. View at Google Scholar
  34. A. Trivisonno, G. Di Rocco, C. Cannistra et al., “Harvest of superficial layers of fat with a microcannula and isolation of adipose tissue-derived stromal and vascular cells,” Aesthetic Surgery Journal, vol. 34, no. 4, pp. 601–613, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Rodbell, “Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium perfringens Alpha toxin) and of insulin on glucose and amino acid metabolism,” The Journal of Biological Chemistry, vol. 241, no. 1, pp. 130–139, 1966. View at Google Scholar
  36. M. Rodbell, “The metabolism of isolated fat cells. IV. Regulation of release of protein by lipolytic hormones and insulin,” The Journal of Biological Chemistry, vol. 241, no. 17, pp. 3909–3917, 1966. View at Google Scholar
  37. M. Rodbell and A. B. Jones, “Metabolism of isolated fat cells. 3. The similar inhibitory action of phospholipase C (Clostridium perfringens Alpha toxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline,” The Journal of Biological Chemistry, vol. 241, no. 1, pp. 140–142, 1966. View at Google Scholar
  38. L. Sensebé, M. Gadelorge, and S. Fleury-Cappellesso, “Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review,” Stem Cell Research & Therapy, vol. 4, no. 3, p. 66, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. S. K. Both, A. J. van den Muijsenberg, C. A. van Blitterswijk, J. de Boer, and J. D. de Bruijn, “A rapid and efficient method for expansion of human mesenchymal stem cells,” Tissue Engineering, vol. 13, no. 1, pp. 3–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. L. G. Chase, U. Lakshmipathy, L. A. Solchaga, M. S. Rao, and M. C. Vemuri, “A novel serum-free medium for the expansion of human mesenchymal stem cells,” Stem Cell Research & Therapy, vol. 1, no. 1, p. 8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Brohlin, P. Kelk, M. Wiberg, and P. J. Kingham, “Effects of a defined xeno-free medium on the growth and neurotrophic and angiogenic properties of human adult stem cells,” Cytotherapy, vol. 19, no. 5, pp. 629–639, 2017. View at Publisher · View at Google Scholar
  42. D. Rubio, J. Garcia-Castro, M. C. Martín et al., “Spontaneous human adult stem cell transformation,” Cancer Research, vol. 65, no. 8, pp. 3035–3039, 2005. View at Publisher · View at Google Scholar
  43. A. Torsvik, G. V. Røsland, A. Svendsen et al., “Spontaneous malignant transformation of human mesenchymal stem cells reflects cross-contamination: putting the research field on track,” Cancer Research, vol. 70, no. 15, pp. 6393–6396, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Holzwarth, M. Vaegler, F. Gieseke et al., “Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells,” BMC Cell Biology, vol. 11, p. 11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Barkholt, E. Flory, V. Jekerle et al., “Risk of tumorigenicity in mesenchymal stromal cell-based therapies—bridging scientific observations and regulatory viewpoints,” Cytotherapy, vol. 15, no. 7, pp. 753–759, 2013. View at Publisher · View at Google Scholar · View at Scopus
  46. M. S. Choudhery, M. Badowski, A. Muise, J. Pierce, and D. T. Harris, “Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation,” Journal of Translational Medicine, vol. 12, p. 8, 2014. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Culmes, H. H. Eckstein, R. Burgkart et al., “Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294,” European Journal of Cell Biology, vol. 92, no. 2, pp. 70–79, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. X. Yan, S. Ehnert, M. Culmes et al., “5-azacytidine improves the osteogenic differentiation potential of aged human adipose-derived mesenchymal stem cells by DNA demethylation,” PloS One, vol. 9, no. 6, article e90846, 2014. View at Publisher · View at Google Scholar · View at Scopus
  49. W. J. Jurgens, M. J. Oedayrajsingh-Varma, M. N. Helder et al., “Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies,” Cell and Tissue Research, vol. 332, no. 3, pp. 415–426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. A. V. Padoin, J. Braga-Silva, P. Martins et al., “Sources of processed lipoaspirate cells: influence of donor site on cell concentration,” Plastic and Reconstructive Surgery, vol. 122, no. 2, pp. 614–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Aust, B. Devlin, S. J. Foster et al., “Yield of human adipose-derived adult stem cells from liposuction aspirates,” Cytotherapy, vol. 6, no. 1, pp. 7–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. V. van Harmelen, T. Skurk, K. Röhrig et al., “Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women,” International Journal of Obesity and Related Metabolic Disorders, vol. 27, no. 8, pp. 889–895, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. L. Shin and D. A. Peterson, “Impaired therapeutic capacity of autologous stem cells in a model of type 2 diabetes,” Stem Cells Translational Medicine, vol. 1, pp. 125–135, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. S. El-Ftesi, E. I. Chang, M. T. Longaker, and G. C. Gurtner, “Aging and diabetes impair the neovascular potential of adipose-derived stromal cells,” Plastic and Reconstructive Surgery, vol. 123, no. 2, pp. 475–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. R. C. Rennert, M. Sorkin, M. Januszyk et al., “Diabetes impairs the angiogenic potential of adipose-derived stem cells by selectively depleting cellular subpopulations,” Stem Cell Research & Therapy, vol. 5, no. 3, p. 79, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Ruetze and W. Richter, “Adipose-derived stromal cells for osteoarticular repair: trophic function versus stem cell activity,” Expert Reviews in Molecular Medicine, vol. 16, article e9, 2014. View at Publisher · View at Google Scholar · View at Scopus
  57. A. J. Salgado, R. L. Reis, N. J. Sousa, and J. M. Gimble, “Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine,” Current Stem Cell Research & Therapy, vol. 5, no. 2, pp. 103–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Rehman, D. Traktuev, J. Li et al., “Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells,” Circulation, vol. 109, no. 10, pp. 1292–1298, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Banas, T. Teratani, Y. Yamamoto et al., “IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury,” Stem Cells, vol. 26, no. 10, pp. 2705–2712, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. S. T. Hsiao, A. Asgari, Z. Lokmic et al., “Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue,” Stem Cells and Development, vol. 21, no. 12, pp. 2189–2203, 2012. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Kim, H. Kim, H. Cho, Y. Bae, K. Suh, and J. Jung, “Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia,” Cellular Physiology and Biochemistry, vol. 20, no. 6, pp. 867–876, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. F. Veronesi, M. Maglio, M. Tschon, N. N. Aldini, and M. Fini, “Adipose-derived mesenchymal stem cells for cartilage tissue engineering: state-of-the-art in in vivo studies,” Journal of Biomedical Materials Research. Part a, vol. 102, no. 7, pp. 2448–2466, 2014. View at Publisher · View at Google Scholar · View at Scopus
  63. K. Kuroda, T. Kabata, K. Hayashi et al., “The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression,” BMC Musculoskeletal Disorders, vol. 16, p. 236, 2015. View at Google Scholar
  64. A. I. Caplan and J. E. Dennis, “Mesenchymal stem cells as trophic mediators,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1076–1084, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. A. I. Hoch, B. Y. Binder, D. C. Genetos, and J. K. Leach, “Differentiation-dependent secretion of proangiogenic factors by mesenchymal stem cells,” PloS One, vol. 7, no. 4, article e35579, 2012. View at Publisher · View at Google Scholar · View at Scopus
  66. R. O. Craft, J. Rophael, W. A. Morrison, A. V. Vashi, G. M. Mitchell, and A. J. Penington, “Effect of local, long-term delivery of platelet-derived growth factor (PDGF) on injected fat graft survival in severe combined immunodeficient (SCID) mice,” Journal of Plastic, Reconstructive & Aesthetic Surgery, vol. 62, no. 2, pp. 235–243, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. S. H. Bhang, S. W. Cho, J. M. Lim et al., “Locally delivered growth factor enhances the angiogenic efficacy of adipose-derived stromal cells transplanted to ischemic limbs,” Stem Cells, vol. 27, no. 8, pp. 1976–1986, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. X. Y. Zhu, X. Z. Zhang, L. Xu, X. Y. Zhong, Q. Ding, and Y. X. Chen, “Transplantation of adipose-derived stem cells overexpressing hHGF into cardiac tissue,” Biochemical and Biophysical Research Communications, vol. 379, no. 4, pp. 1084–1090, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. F. Andriani, F. Facchinetti, S. Furia et al., “Adipose tissue displays trophic properties on normal lung cellular components without promoting cancer cells growth,” Journal of Cellular Physiology, vol. 228, no. 6, pp. 1166–1173, 2013. View at Publisher · View at Google Scholar · View at Scopus
  70. I. H. Schulman and J. M. Hare, “Key developments in stem cell therapy in cardiology,” Regenerative Medicine, vol. 7, Supplement 6, pp. 17–24, 2012. View at Google Scholar
  71. E. Duckers, “Freshly adipose-derived stem cell in acute myocardial infarction. The APOLLO trial,” in 7th International Symposium on Stem Cell Therapy and Cardiovascular Innovation, Madrid, Spain, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. E. C. Perin, R. Sanz-Ruiz, P. L. Sánchez et al., “Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE trial,” American Heart Journal, vol. 168, no. 1, pp. 88–95, 2014. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Sawada, M. Takedachi, S. Yamamoto et al., “Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells,” Biochemical and Biophysical Research Communications, vol. 464, no. 1, pp. 299–205, 2015. View at Publisher · View at Google Scholar · View at Scopus
  74. M. Yanagita, Y. Kojima, M. Kubota et al., “Cooperative effects of FGF-2 and VEGF-A in periodontal ligament cells,” Journal of Dental Research, vol. 93, no. 1, pp. 89–95, 2014. View at Google Scholar
  75. J. H. Lee, S. Um, J. H. Jang, and B. M. Seo, “Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells,” Cell and Tissue Research, vol. 348, no. 3, pp. 475–484, 2012. View at Publisher · View at Google Scholar · View at Scopus
  76. S. P. Blaber, R. A. Webster, C. J. Hill et al., “Analysis of in vitro secretion profiles from adipose-derived cell populations,” Journal of Translational Medicine, vol. 10, p. 172, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. N. Naftali-Shani, A. Itzhaki-Alfia, N. Landa-Rouben et al., “The origin of human mesenchymal stromal cells dictates their reparative properties,” Journal of the American Heart Association, vol. 2, no. 5, article e000253, 2013. View at Google Scholar
  78. M. Hassan, N. Latif, and M. Yacoub, “Adipose tissue: friend or foe?” Nature Reviews. Cardiology, vol. 9, no. 12, pp. 689–702, 2012. View at Publisher · View at Google Scholar · View at Scopus
  79. S. A. Porter, J. M. Massaro, U. Hoffmann, R. S. Vasan, C. J. O’Donnel, and C. S. Fox, “Abdominal subcutaneous adipose tissue: a protective fat depot?” Diabetes Care, vol. 32, no. 6, pp. 1068–1075, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. T. Mazurek, L. Zhang, A. Zalewski et al., “Human epicardial adipose tissue is a source of inflammatory mediators,” Circulation, vol. 108, no. 20, pp. 2460–2466, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. T. Katsuda, N. Kosaka, F. Takeshita, and T. Ochiya, “The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles,” Proteomics, vol. 13, no. 10-11, pp. 1637–1653, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. C. Théry, M. Ostrowski, and E. Segura, “Membrane vesicles as conveyors of immune responses,” Nature Reviews. Immunology, vol. 9, no. 8, pp. 581–593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. S. R. Baglio, K. Rooijers, D. Koppers-Lalic et al., “Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive mi RNA and tRNA species,” Stem Cell Research & Therapy, vol. 6, p. 127, 2015. View at Google Scholar
  84. T. Katsuda and T. Ochiya, “Molecular signatures of mesenchymal stem cell-derived extracellular vesicle-mediated tissue repair,” Stem Cell Research & Therapy, vol. 6, p. 212, 2015. View at Google Scholar
  85. X. Zhang, H. Tu, Y. Yang, L. Fang, Q. Wu, and J. Li, “Mesenchymal stem cell-derived extracellular vesicles: roles in tumor growth, progression, and drug resistance,” Stem Cells International, vol. 2017, Article ID 1758139, 12 pages, 2017. View at Publisher · View at Google Scholar
  86. L. Hu, J. Wang, X. Zhou et al., “Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts,” Scientific Reports, vol. 6, article 32993, 2016. View at Google Scholar
  87. R. Blazquez, F. M. Sanchez-Margallo, O. de la Rosa et al., “Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells,” Frontiers in Immunology, vol. 5, p. 556, 2014. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Katsuda, R. Tsuchiya, N. Kosaka et al., “Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes,” Scientific Reports, vol. 3, p. 1197, 2013. View at Google Scholar
  89. A. Peister, J. A. Mellad, B. L. Larson, B. M. Hall, L. F. Gibson, and D. J. Prockop, “Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential,” Blood, vol. 103, no. 5, pp. 1662–1668, 2004. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Banas, “Purification of adipose tissue mesenchymal stem cells and differentiation toward hepatic-like cells,” Methods in Molecular Biology, vol. 826, pp. 61–72, 2012. View at Google Scholar
  91. S. Gronthos, P. J. Simmons, S. E. Graves, and P. G. Robey, “Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix,” Bone, vol. 28, no. 2, pp. 174–181, 2001. View at Publisher · View at Google Scholar · View at Scopus
  92. C. S. Lin, Z. C. Xin, C. H. Deng, H. Ning, G. Lin, and T. F. Lue, “Defining adipose tissue-derived stem cells in tissue and in culture,” Histology and Histopathology, vol. 25, no. 6, pp. 807–815, 2010. View at Publisher · View at Google Scholar
  93. J. B. Mitchell, K. McIntosh, S. Zvonic et al., “Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers,” Stem Cells, vol. 24, no. 2, pp. 376–385, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Kuroda and M. Dezawa, “Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine,” The Anatomical Record, vol. 297, no. 1, pp. 98–110, 2014. View at Publisher · View at Google Scholar · View at Scopus
  95. M. Maumus, J. A. Peyrafitte, R. D'Angelo et al., “Native human adipose stromal cells: localization, morphology and phenotype,” International Journal of Obesity, vol. 35, no. 9, pp. 1141–1153, 2011. View at Google Scholar
  96. R. Yañez, M. L. Lamana, J. García-Castro, I. Colmenero, M. Ramírez, and J. A. Bueren, “Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease,” Stem Cells, vol. 24, no. 11, pp. 2582–2591, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. H. Ning, G. Lin, T. F. Lue, and C. S. Lin, “Mesenchymal stem cell marker Stro-1 is a 75 kd endothelial antigen,” Biochemical and Biophysical Research Communications, vol. 413, no. 2, pp. 353–357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  98. H. Busser, M. Najar, G. Raicevic et al., “Isolation and characterization of human mesenchymal stromal cell subpopulations: comparison of bone marrow and adipose tissue,” Stem Cells and Development, vol. 24, no. 18, pp. 2142–2157, 2015. View at Publisher · View at Google Scholar · View at Scopus
  99. Y. Otsuki, Y. Nakamura, S. Harada et al., “Adipose stem cell sheets improved cardiac function in the rat myocardial infarction, but did not alter cardiac contractile responses to β-adrenergic stimulation,” Biomedical Research, vol. 36, no. 1, pp. 11–19, 2015. View at Publisher · View at Google Scholar · View at Scopus