Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2017, Article ID 4130607, 16 pages
https://doi.org/10.1155/2017/4130607
Review Article

Advances and Prospects in Stem Cells for Cartilage Regeneration

1Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
2Anesthesiology Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
3Medical College, Nankai University, Tianjin, 300071, China
4Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China

Correspondence should be addressed to Shuyun Liu; moc.361@nna_raelc and Quanyi Guo; moc.361@103_ougrotcod

Received 22 July 2016; Revised 24 November 2016; Accepted 26 December 2016; Published 26 January 2017

Academic Editor: Jianying Zhang

Copyright © 2017 Mingjie Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. B. Goldring and S. R. Goldring, “Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis,” Annals of the New York Academy of Sciences, vol. 1192, pp. 230–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Zeckser, M. Wolff, J. Tucker, and J. Goodwin, “Multipotent mesenchymal stem cell treatment for discogenic low back pain and disc degeneration,” Stem Cells International, vol. 2016, Article ID 3908389, 13 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Yelin, “Cost of musculoskeletal diseases: impact of work disability and functional decline,” Journal of Rheumatology. Supplement, vol. 68, pp. 8–11, 2003. View at Google Scholar · View at Scopus
  4. S. Oussedik, K. Tsitskaris, and D. Parker, “Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review,” Arthroscopy, vol. 31, no. 4, pp. 732–744, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson, “Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation,” The New England Journal of Medicine, vol. 331, no. 14, pp. 889–895, 1994. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Niemeyer, D. Albrecht, S. Andereya et al., “Autologous chondrocyte implantation (ACI) for cartilage defects of the knee: a guideline by the working group ‘Clinical Tissue Regeneration’ of the German Society of Orthopaedics and Trauma (DGOU),” Knee, vol. 23, no. 3, pp. 426–435, 2016. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Duan, Y. Liang, B. Ma, W. Zhu, and D. Wang, “Epigenetic regulation in chondrocyte phenotype maintenance for cell-based cartilage repair,” American Journal of Translational Research, vol. 7, no. 11, pp. 2127–2140, 2015. View at Google Scholar · View at Scopus
  8. L. Duan, B. Ma, Y. Liang et al., “Cytokine networking of chondrocyte dedifferentiation in vitro and its implications for cell-based cartilage therapy,” American Journal of Translational Research, vol. 7, no. 2, pp. 194–208, 2015. View at Google Scholar · View at Scopus
  9. N. C. Foster, J. R. Henstock, Y. Reinwald, and A. J. El Haj, “Dynamic 3D culture: models of chondrogenesis and endochondral ossification,” Birth Defects Research Part C: Embryo Today: Reviews, vol. 105, no. 1, pp. 19–33, 2015. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Park and G.-I. Im, “Embryonic stem cells and induced pluripotent stem cells for skeletal regeneration,” Tissue Engineering Part B: Reviews, vol. 20, no. 5, pp. 381–391, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. G. M. Hoben, V. P. Willard, and K. A. Athanasiou, “Fibrochondrogenesis of hESCs: growth factor combinations and cocultures,” Stem Cells and Development, vol. 18, no. 2, pp. 283–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Toguchida, “Bone and stem cells. Advancement of regenerative medicine in the locomotive system using iPS cells,” Clinical Calcium, vol. 24, no. 4, pp. 587–592, 2014. View at Google Scholar · View at Scopus
  13. J. Dulak, K. Szade, A. Szade, W. Nowak, and A. Józkowicz, “Adult stem cells: hopes and hypes of regenerative medicine,” Acta Biochimica Polonica, vol. 62, no. 3, pp. 329–337, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Cheng, T. E. Hardingham, and S. J. Kimber, “Generating cartilage repair from pluripotent stem cells,” Tissue Engineering B: Reviews, vol. 20, no. 4, pp. 257–266, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Pacini, “Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs),” Frontiers in Cell and Developmental Biology, vol. 2, article 50, 2014. View at Publisher · View at Google Scholar
  16. G. P. Dowthwaite, J. C. Bishop, S. N. Redman et al., “The surface of articular cartilage contains a progenitor cell populations,” Journal of Cell Science, vol. 117, no. 6, pp. 889–897, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Chen, B. H. Lee, and Y. Bae, “Notch signaling in skeletal stem cells,” Calcified Tissue International, vol. 94, no. 1, pp. 68–77, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Williams, I. M. Khan, K. Richardson et al., “Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage,” PLoS ONE, vol. 5, no. 10, Article ID e13246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Koelling, J. Kruegel, M. Irmer et al., “Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis,” Cell Stem Cell, vol. 4, no. 4, pp. 324–335, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Yu, H. Zheng, J. A. Buckwalter, and J. A. Martin, “Single cell sorting identifies progenitor cell population from full thickness bovine articular cartilage,” Osteoarthritis and Cartilage, vol. 22, no. 9, pp. 1318–1326, 2014. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Zhou, H. Zheng, D. Seol, Y. Yu, and J. A. Martin, “Gene expression profiles reveal that chondrogenic progenitor cells and synovial cells are closely related,” Journal of Orthopaedic Research, vol. 32, no. 8, pp. 981–988, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. H. E. McCarthy, J. J. Bara, K. Brakspear, S. K. Singhrao, and C. W. Archer, “The comparison of equine articular cartilage progenitor cells and bone marrow-derived stromal cells as potential cell sources for cartilage repair in the horse,” Veterinary Journal, vol. 192, no. 3, pp. 345–351, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Studer, C. Millan, E. Öztürk, K. Maniura-Weber, and M. Zenobi-Wong, “Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells,” European Cells and Materials, vol. 24, pp. 118–135, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Jiang, Y. Cai, W. Zhang et al., “Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration,” Stem Cells Translational Medicine, vol. 5, no. 6, pp. 733–744, 2016. View at Publisher · View at Google Scholar · View at Scopus
  25. H. Huang, S. Wang, J. Gui, and H. Shen, “A study to identify and characterize the stem/progenitor cell in rabbit meniscus,” Cytotechnology, vol. 68, no. 5, pp. 2083–2103, 2016. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Sang, X. Cao, F. Chen, X. Yang, and Y. Zhang, “Differential characterization of two kinds of stem cells isolated from rabbit nucleus pulposus and annulus fibrosus,” Stem Cells International, vol. 2016, Article ID 8283257, 14 pages, 2016. View at Publisher · View at Google Scholar
  27. Y. Jiang and R. S. Tuan, “Origin and function of cartilage stem/progenitor cells in osteoarthritis,” Nature Reviews Rheumatology, vol. 11, no. 4, pp. 206–212, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. F. Davatchi, B. Sadeghi Abdollahi, M. Mohyeddin, and B. Nikbin, “Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients,” International Journal of Rheumatic Diseases, vol. 19, no. 3, pp. 219–225, 2016. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Vega, M. A. Martín-Ferrero, F. D. Canto et al., “Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial,” Transplantation, vol. 99, no. 8, pp. 1681–1690, 2015. View at Publisher · View at Google Scholar · View at Scopus
  30. C. T. Vangsness Jr., J. Farr II, J. Boyd, D. T. Dellaero, C. R. Mills, and M. LeRoux-Williams, “Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study,” The Journal of Bone & Joint Surgery—American Volume, vol. 96, no. 2, pp. 90–98, 2014. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Orozco, A. Munar, R. Soler et al., “Treatment of knee osteoarthritis with autologous mesenchymal stem cells: two-year follow-up results,” Transplantation, vol. 97, no. 11, pp. e66–e68, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. K. L. Wong, K. B. L. Lee, B. C. Tai, P. Law, E. H. Lee, and J. H. P. Hui, “Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years' follow-up,” Arthroscopy, vol. 29, no. 12, pp. 2020–2028, 2013. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Richter and S. Zech, “Matrix-associated stem cell transplantation (MAST) in chondral defects of foot and ankle is effective,” Foot and Ankle Surgery, vol. 19, no. 2, pp. 84–90, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. K. B. L. Lee, V. T. Z. Wang, Y. H. Chan, and J. H. P. Hui, “A novel, minimally-invasive technique of cartilage repair in the human knee using arthroscopic microfracture and injections of mesenchymal stem cells and hyaluronic acid-a prospective comparative study on safety and short-term efficacy,” Annals of the Academy of Medicine Singapore, vol. 41, no. 11, pp. 511–517, 2012. View at Google Scholar · View at Scopus
  35. I. Sekiya, T. Muneta, M. Horie, and H. Koga, “Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects,” Clinical Orthopaedics and Related Research, vol. 473, no. 7, pp. 2316–2326, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. Y.-G. Koh, O.-R. Kwon, Y.-S. Kim, Y.-J. Choi, and D.-H. Tak, “Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial,” Arthroscopy, vol. 32, no. 1, pp. 97–109, 2016. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. S. Kim, Y. J. Choi, S. W. Lee et al., “Assessment of clinical and mri outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study,” Osteoarthritis and Cartilage, vol. 24, no. 2, pp. 237–245, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Michalek, R. Moster, L. Lukac et al., “Autologous adipose tissue-derived stromal vascular fraction cells application in patients with osteoarthritis,” Cell Transplantation, 2015. View at Publisher · View at Google Scholar
  39. Y.-G. Koh, Y.-J. Choi, S.-K. Kwon, Y.-S. Kim, and J.-E. Yeo, “Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 23, no. 5, pp. 1308–1316, 2015. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. S. Kim, Y. J. Choi, D. S. Suh et al., “Mesenchymal stem cell implantation in osteoarthritic knees: is fibrin glue effective as a scaffold?” The American Journal of Sports Medicine, vol. 43, no. 1, pp. 176–185, 2015. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. S. Kim, Y. J. Choi, and Y. G. Koh, “Mesenchymal stem cell implantation in knee osteoarthritis: an assessment of the factors influencing clinical outcomes,” The American Journal of Sports Medicine, vol. 43, no. 9, pp. 2293–2301, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Pak, J. H. Lee, and S. H. Lee, “Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells,” BioMed Research International, vol. 2014, Article ID 436029, 10 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. G. Koh, Y. J. Choi, O. R. Kwon, and Y. S. Kim, “Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees,” The American Journal of Sports Medicine, vol. 42, no. 7, pp. 1628–1637, 2014. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. S. Kim, H. J. Lee, Y. J. Choi, Y. I. Kim, and Y. G. Koh, “Does an injection of a stromal vascular fraction containing adipose-derived mesenchymal stem cells influence the outcomes of marrow stimulation in osteochondral lesions of the talus? A clinical and magnetic resonance imaging study,” American Journal of Sports Medicine, vol. 42, no. 10, pp. 2424–2434, 2014. View at Publisher · View at Google Scholar · View at Scopus
  45. C. H. Jo, Y. G. Lee, W. H. Shin et al., “Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial,” Stem Cells, vol. 32, no. 5, pp. 1254–1266, 2014. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Pak, J.-J. Chang, J. H. Lee, and S. H. Lee, “Safety reporting on implantation of autologous adipose tissue-derived stem cells with platelet-rich plasma into human articular joints,” BMC Musculoskeletal Disorders, vol. 14, article 337, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. Y.-G. Koh, S.-B. Jo, O.-R. Kwon et al., “Mesenchymal stem cell injections improve symptoms of knee osteoarthritis,” Arthroscopy, vol. 29, no. 4, pp. 748–755, 2013. View at Publisher · View at Google Scholar · View at Scopus
  48. Y. S. Kim, E. H. Park, Y. C. Kim, and Y. G. Koh, “Clinical outcomes of mesenchymal stem cell injection with arthroscopic treatment in older patients with osteochondral lesions of the talus,” The American Journal of Sports Medicine, vol. 41, no. 5, pp. 1090–1099, 2013. View at Publisher · View at Google Scholar · View at Scopus
  49. Y.-G. Koh and Y.-J. Choi, “Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis,” Knee, vol. 19, no. 6, pp. 902–907, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. W.-L. Fu, Y.-F. Ao, X.-Y. Ke et al., “Repair of large full-thickness cartilage defect by activating endogenous peripheral blood stem cells and autologous periosteum flap transplantation combined with patellofemoral realignment,” Knee, vol. 21, no. 2, pp. 609–612, 2014. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Turajane, U. Chaweewannakorn, V. Larbpaiboonpong et al., “Combination of intra-articular autologous activated peripheral blood stem cells with growth factor addition/ preservation and hyaluronic acid in conjunction with arthroscopic microdrilling mesenchymal cell stimulation Improves quality of life and regenerates articular cartilage in early osteoarthritic knee disease,” Journal of the Medical Association of Thailand, vol. 96, no. 5, pp. 580–588, 2013. View at Google Scholar · View at Scopus
  52. K.-Y. Saw, A. Anz, C. S.-Y. Jee et al., “Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial,” Arthroscopy—Journal of Arthroscopic and Related Surgery, vol. 29, no. 4, pp. 684–694, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Skowroński, R. Skowroński, and M. Rutka, “Cartilage lesions of the knee treated with blood mesenchymal stem cells—results,” Ortopedia Traumatologia Rehabilitacja, vol. 14, no. 6, pp. 569–577, 2012. View at Publisher · View at Google Scholar · View at Scopus
  54. W. S. Toh, E. H. Lee, and T. Cao, “Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine,” Stem Cell Reviews and Reports, vol. 7, no. 3, pp. 544–559, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. A. Cheng, Z. Kapacee, J. Peng et al., “Cartilage repair using human embryonic stem cell-derived chondroprogenitors,” Stem Cells Translational Medicine, vol. 3, no. 11, pp. 1287–1294, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Fu, Z. Yan, H. Xu et al., “Isolation, identification and differentiation of human embryonic cartilage stem cells,” Cell Biology International, vol. 39, no. 7, pp. 777–787, 2015. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. R. M. Guzzo and H. Drissi, “Differentiation of human induced pluripotent stem cells to chondrocytes,” Methods in Molecular Biology, vol. 1340, pp. 79–95, 2015. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Tsumaki, M. Okada, and A. Yamashita, “iPS cell technologies and cartilage regeneration,” Bone, vol. 70, pp. 48–54, 2015. View at Publisher · View at Google Scholar · View at Scopus
  60. R. M. Guzzo, V. Scanlon, A. Sanjay, R.-H. Xu, and H. Drissi, “Establishment of human cell type-specific iPS cells with enhanced chondrogenic potential,” Stem Cell Reviews and Reports, vol. 10, no. 6, pp. 820–829, 2014. View at Publisher · View at Google Scholar · View at Scopus
  61. S. M. Richardson, G. Kalamegam, P. N. Pushparaj et al., “Mesenchymal stem cells in regenerative medicine: focus on articular cartilage and intervertebral disc regeneration,” Methods, vol. 99, pp. 69–80, 2016. View at Publisher · View at Google Scholar · View at Scopus
  62. M. B. Goldring, K. Tsuchimochi, and K. Ijiri, “The control of chondrogenesis,” Journal of Cellular Biochemistry, vol. 97, no. 1, pp. 33–44, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Bhattacharjee, J. Coburn, M. Centola et al., “Tissue engineering strategies to study cartilage development, degeneration and regeneration,” Advanced Drug Delivery Reviews, vol. 84, pp. 107–122, 2015. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Zhou, X. Yuan, H. Yin, and J. E. Gough, “Restoration of chondrocytic phenotype on a two-dimensional micropatterned surface,” Biointerphases, vol. 10, no. 1, Article ID 011003, 2015. View at Publisher · View at Google Scholar · View at Scopus
  65. J. A. Panadero, S. Lanceros-Mendez, and J. L. G. Ribelles, “Differentiation of mesenchymal stem cells for cartilage tissue engineering: individual and synergetic effects of three-dimensional environment and mechanical loading,” Acta Biomaterialia, vol. 33, pp. 1–12, 2016. View at Publisher · View at Google Scholar · View at Scopus
  66. K. M. Hubka, R. L. Dahlin, V. V. Meretoja, F. K. Kasper, and A. G. Mikos, “Enhancing chondrogenic phenotype for cartilage tissue engineering: monoculture and coculture of articular chondrocytes and mesenchymal stem cells,” Tissue Engineering Part B: Reviews, vol. 20, no. 6, pp. 641–654, 2014. View at Publisher · View at Google Scholar · View at Scopus
  67. J. C. Sherwood, J. Bertrand, S. E. Eldridge, and F. Dell'accio, “Cellular and molecular mechanisms of cartilage damage and repair,” Drug Discovery Today, vol. 19, no. 8, pp. 1172–1177, 2014. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Bhattaram and U. Chandrasekharan, “The joint synovium: a critical determinant of articular cartilage fate in inflammatory joint diseases,” Seminars in Cell & Developmental Biology, 2016. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Chen, P. Fu, R. Cong, H. Wu, and M. Pei, “Strategies to minimize hypertrophy in cartilage engineering and regeneration,” Genes and Diseases, vol. 2, no. 1, pp. 76–95, 2015. View at Publisher · View at Google Scholar · View at Scopus
  70. S. P. Grogan, X. Chen, S. Sovani et al., “Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation,” Tissue Engineering—Part A, vol. 20, no. 1-2, pp. 264–274, 2014. View at Publisher · View at Google Scholar · View at Scopus
  71. T. A. Stupina, M. A. Stepanov, and M. P. Teplen'kii, “Role of subchondral bone in the restoration of articular cartilage,” Bulletin of Experimental Biology and Medicine, vol. 158, no. 6, pp. 820–823, 2015. View at Publisher · View at Google Scholar · View at Scopus
  72. Z. Wang, H. Qin, Z. Feng, and Y. Zhao, “Platelet-rich plasma gel composited with nondegradable porous polyurethane scaffolds as a potential auricular cartilage alternative,” Journal of Biomaterials Applications, vol. 30, no. 7, pp. 889–899, 2016. View at Publisher · View at Google Scholar · View at Scopus
  73. A. J. Krych, D. H. Nawabi, N. A. Farshad-Amacker et al., “Bone marrow concentrate improves early cartilage phase maturation of a scaffold plug in the knee: a comparative magnetic resonance imaging analysis to platelet-rich plasma and control,” American Journal of Sports Medicine, vol. 44, no. 1, pp. 91–98, 2016. View at Publisher · View at Google Scholar · View at Scopus
  74. A. G. Bajpayee, M. Scheu, A. J. Grodzinsky, and R. M. Porter, “A rabbit model demonstrates the influence of cartilage thickness on intra-articular drug delivery and retention within cartilage,” Journal of Orthopaedic Research, vol. 33, no. 5, pp. 660–667, 2015. View at Publisher · View at Google Scholar · View at Scopus
  75. K. Takayama, Y. Kawakami, M. Kobayashi et al., “Local intra-articular injection of rapamycin delays articular cartilage degeneration in a murine model of osteoarthritis,” Arthritis research & therapy, vol. 16, no. 6, article 482, 2014. View at Publisher · View at Google Scholar · View at Scopus
  76. K. Chen, N. Zhang, L. Ding, W. Zhang, J. Hu, and S. Zhu, “Early intra-articular injection of alendronate reduces cartilage changes and subchondral bone loss in rat temporomandibular joints after ovariectomy,” International Journal of Oral and Maxillofacial Surgery, vol. 43, no. 8, pp. 996–1004, 2014. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Chareancholvanich, C. Pornrattanamaneewong, and R. Narkbunnam, “Increased cartilage volume after injection of hyaluronic acid in osteoarthritis knee patients who underwent high tibial osteotomy,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 22, no. 6, pp. 1415–1423, 2014. View at Publisher · View at Google Scholar · View at Scopus
  78. M. Hayashi, T. Muneta, T. Takahashi, Y.-J. Ju, K. Tsuji, and I. Sekiya, “Intra-articular injections of bone morphogenetic protein-7 retard progression of existing cartilage degeneration,” Journal of Orthopaedic Research, vol. 28, no. 11, pp. 1502–1506, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Yazdi, B. T. Nimavard, M. Shokrgozar et al., “An evaluation of the delayed effect of intra-articular injections of lidocaine (2 %) on articular cartilage: an experimental study in rabbits,” European Journal of Orthopaedic Surgery and Traumatology, vol. 24, no. 8, pp. 1557–1561, 2014. View at Publisher · View at Google Scholar · View at Scopus
  80. P. S. McCabe, N. Maricar, M. J. Parkes, D. T. Felson, and T. W. O'Neill, “The efficacy of intra-articular steroids in hip osteoarthritis: a systematic review,” Osteoarthritis and Cartilage, vol. 24, no. 9, pp. 1509–1517, 2016. View at Publisher · View at Google Scholar · View at Scopus
  81. Evidence Development and Standards Branch and Health Quality Ontario, “Arthroscopic debridement of the knee: an evidence update,” Ontario Health Technology Assessment Series, vol. 14, no. 13, pp. 1–43, 2014. View at Google Scholar
  82. A. Badri and J. Burkhardt, “Arthroscopic debridement of unicompartmental arthritis. Fact or fiction?” Clinics in Sports Medicine, vol. 33, no. 1, pp. 23–41, 2014. View at Publisher · View at Google Scholar · View at Scopus
  83. Health Quality Ontario, “Arthroscopic lavage and debridement for osteoarthritis of the knee: an evidence-based analysis,” Ontario Health Technology Assessment Series, vol. 5, no. 12, pp. 1–37, 2005. View at Google Scholar
  84. K. H. Fibel, H. J. Hillstrom, and B. C. Halpern, “State-of-the-Art management of knee osteoarthritis,” World Journal of Clinical Cases, vol. 3, no. 2, pp. 89–101, 2015. View at Publisher · View at Google Scholar
  85. W. Guo, S. Liu, Y. Zhu et al., “Advances and prospects in tissue-engineered meniscal scaffolds for meniscus regeneration,” Stem Cells International, vol. 2015, Article ID 517520, 13 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  86. R. B. Souza, S. J. Wu, L. J. Morse, K. Subburaj, C. R. Allen, and B. T. Feeley, “Cartilage MRI relaxation times after arthroscopic partial medial meniscectomy reveal localized degeneration,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 23, no. 1, pp. 188–197, 2014. View at Publisher · View at Google Scholar · View at Scopus
  87. J. J. Rongen, G. Hannink, T. G. van Tienen, J. van Luijk, and C. R. Hooijmans, “The protective effect of meniscus allograft transplantation on articular cartilage: a systematic review of animal studies,” Osteoarthritis and Cartilage, vol. 23, no. 8, pp. 1242–1253, 2015. View at Publisher · View at Google Scholar · View at Scopus
  88. D.-H. Lee, C.-R. Lee, J.-H. Jeon, K.-A. Kim, and S.-I. Bin, “Graft extrusion in both the coronal and sagittal planes is greater after medial compared with lateral meniscus allograft transplantation but is unrelated to early clinical outcomes,” American Journal of Sports Medicine, vol. 43, no. 1, pp. 213–219, 2015. View at Publisher · View at Google Scholar · View at Scopus
  89. W. G. Rodkey, J. R. Steadman, and S.-T. Li, “A clinical study of collagen meniscus implants to restore the injured meniscus,” Clinical Orthopaedics and Related Research, no. 367, pp. S281–S292, 1999. View at Google Scholar · View at Scopus
  90. Y. Zhang, P. Li, H. Wang, Y. Wang, K. Song, and T. Li, “Research progress on reconstruction of meniscus in tissue engineering,” The Journal of Sports Medicine and Physical Fitness, 2016. View at Google Scholar
  91. F. Balagué, A. F. Mannion, F. Pellisé, and C. Cedraschi, “Non-specific low back pain,” The Lancet, vol. 379, no. 9814, pp. 482–491, 2012. View at Publisher · View at Google Scholar · View at Scopus
  92. J. W. Geurts, J.-W. Kallewaard, A. Kessels et al., “Efficacy and cost-effectiveness of intradiscal methylene blue injection for chronic discogenic low back pain: study protocol for a randomized controlled trial,” Trials, vol. 16, no. 1, article 532, 2015. View at Publisher · View at Google Scholar · View at Scopus
  93. F. Clarençon, B. Law-Ye, P. Bienvenot, É. Cormier, and J. Chiras, “The degenerative spine,” Magnetic Resonance Imaging Clinics of North America, vol. 24, no. 3, pp. 495–513, 2016. View at Publisher · View at Google Scholar · View at Scopus
  94. C. Feng, H. Liu, M. Yang, Y. Zhang, B. Huang, and Y. Zhou, “Disc cell senescence in intervertebral disc degeneration: causes and molecular pathways,” Cell Cycle, vol. 15, no. 13, pp. 1674–1684, 2016. View at Publisher · View at Google Scholar · View at Scopus
  95. C. Wang, W.-J. Wang, Y.-G. Yan et al., “MicroRNAs: new players in intervertebral disc degeneration,” Clinica Chimica Acta, vol. 450, pp. 333–341, 2015. View at Publisher · View at Google Scholar · View at Scopus
  96. L. Orozco, R. Soler, C. Morera, M. Alberca, A. Sánchez, and J. García-Sancho, “Intervertebral disc repair by autologous mesenchymal bone marrow cells: A Pilot Study,” Transplantation, vol. 92, no. 7, pp. 822–828, 2011. View at Publisher · View at Google Scholar · View at Scopus
  97. Q. Yang, H.-W. Xu, S. Hurday, and B.-S. Xu, “Construction strategy and progress of whole intervertebral disc tissue engineering,” Orthopaedic Surgery, vol. 8, no. 1, pp. 11–18, 2016. View at Publisher · View at Google Scholar · View at Scopus
  98. H. H. Passler, “Microfracture for treatment of cartilage detects,” Zentralblatt für Chirurgie, vol. 125, no. 6, pp. 500–504, 2000. View at Google Scholar
  99. D. L. Richter, R. C. Schenck, D. C. Wascher, and G. Treme, “Knee articular cartilage repair and restoration techniques: a review of the literature,” Sports Health, vol. 8, no. 2, pp. 153–160, 2016. View at Publisher · View at Google Scholar · View at Scopus
  100. P. Abdel-Sayed and D. P. Pioletti, “Strategies for improving the repair of focal cartilage defects,” Nanomedicine, vol. 10, no. 18, pp. 2893–2905, 2015. View at Publisher · View at Google Scholar · View at Scopus
  101. L. Hangody, G. Kish, Z. Kárpáti, I. Szerb, and I. Udvarhelyi, “Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 5, no. 4, pp. 262–267, 1997. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Duif, M. A. Koutah, O. Ackermann et al., “Combination of autologous chondrocyte implantation (ACI) and osteochondral autograft transfer system (OATS) for surgical repair of larger cartilage defects of the knee joint. A review illustrated by a case report,” Technology and Health Care, vol. 23, no. 5, pp. 531–537, 2015. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Mellati, M. V. Kiamahalleh, S. H. Madani et al., “Poly(N-isopropylacrylamide) hydrogel/chitosan scaffold hybrid for three-dimensional stem cell culture and cartilage tissue engineering,” Journal of Biomedical Materials Research—Part A, 2016. View at Publisher · View at Google Scholar · View at Scopus
  104. S. Fischer and A. Kisser, “Single-step scaffold-based cartilage repair in the knee: a systematic review,” Journal of Orthopaedics, vol. 13, no. 4, pp. 246–253, 2016. View at Publisher · View at Google Scholar
  105. D. O. Visscher, E. J. Bos, M. Peeters et al., “Cartilage tissue engineering: preventing tissue scaffold contraction using a 3D-printed polymeric cage,” Tissue Engineering—Part C: Methods, vol. 22, no. 6, pp. 573–584, 2016. View at Publisher · View at Google Scholar · View at Scopus
  106. A. D. Olubamiji, Z. Izadifar, J. L. Si, D. M. Cooper, B. F. Eames, and D. X. Chen, “Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry,” Biofabrication, vol. 8, no. 2, Article ID 025020, 2016. View at Publisher · View at Google Scholar
  107. G. Bentley, J. S. Bhamra, P. D. Gikas, J. A. Skinner, R. Carrington, and T. W. Briggs, “Repair of osteochondral defects in joints—how to achieve success,” Injury, vol. 44, no. 1, pp. S3–S10, 2013. View at Publisher · View at Google Scholar · View at Scopus
  108. J. E. Browne, A. F. Anderson, R. Arciero et al., “Clinical outcome of autologous chondrocyte implantation at 5 years in US subjects,” Clinical Orthopaedics and Related Research, no. 436, pp. 237–245, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. T. Minas, A. H. Gomoll, S. Solhpour, R. Rosenberger, C. Probst, and T. Bryant, “Autologous chondrocyte implantation for joint preservation in patients with early osteoarthritis,” Clinical Orthopaedics and Related Research, vol. 468, no. 1, pp. 147–157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. R. E. Rosenberger, A. H. Gomoll, T. Bryant, and T. Minas, “Repair of large chondral defects of the knee with autologous chondrocyte implantation in patients 45 years or older,” American Journal of Sports Medicine, vol. 36, no. 12, pp. 2336–2344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. J. Farr, “Autologous chondrocyte implantation improves patellofemoral cartilage treatment outcomes,” Clinical Orthopaedics and Related Research, no. 463, pp. 187–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  112. L. Peterson, T. Minas, M. Brittberg, and A. Lindahl, “Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years,” Journal of Bone and Joint Surgery—Series A, vol. 85, no. 1, pp. 17–24, 2003. View at Google Scholar · View at Scopus
  113. L. Peterson, H. S. Vasiliadis, M. Brittberg, and A. Lindahl, “Autologous chondrocyte implantation: a long-term follow-up,” The American Journal of Sports Medicine, vol. 38, no. 6, pp. 1117–1124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. C. B. Foldager, J. Farr, and A. H. Gomoll, “Patients scheduled for chondrocyte implantation treatment with MACI have larger defects than those enrolled in clinical trials,” Cartilage, vol. 7, no. 2, pp. 140–148, 2016. View at Publisher · View at Google Scholar · View at Scopus
  115. E. Kon, G. Filardo, A. Di Martino, and M. Marcacci, “ACI and MACI,” The Journal of Knee Surgery, vol. 25, no. 1, pp. 17–22, 2012. View at Publisher · View at Google Scholar · View at Scopus
  116. F. Zhang, K. Su, Y. Fang, S. Sandhya, and D.-A. Wang, “A mixed co-culture of mesenchymal stem cells and transgenic chondrocytes in alginate hydrogel for cartilage tissue engineering,” Journal of Tissue Engineering and Regenerative Medicine, vol. 9, no. 1, pp. 77–84, 2015. View at Publisher · View at Google Scholar · View at Scopus
  117. Y. Wu, J. Zhou, L. Bi et al., “Effects of bone marrow mesenchymal stem cells on the cardiac function and immune system of mice with endotoxemia,” Molecular Medicine Reports, vol. 13, no. 6, pp. 5317–5325, 2016. View at Publisher · View at Google Scholar · View at Scopus
  118. A. Park, J. Barrera-Ramirez, I. Ranasinghe et al., “Use of statins to augment progenitor cell function in preclinical and clinical studies of regenerative therapy: a systematic review,” Stem Cell Reviews and Reports, vol. 12, no. 3, pp. 327–339, 2016. View at Publisher · View at Google Scholar · View at Scopus
  119. G. Filardo, F. Perdisa, A. Roffi, M. Marcacci, and E. Kon, “Stem cells in articular cartilage regeneration,” Journal of Orthopaedic Surgery and Research, vol. 11, no. 1, article 42, 2016. View at Publisher · View at Google Scholar · View at Scopus
  120. W. Shen, J. Chen, T. Zhu et al., “Osteoarthritis prevention through meniscal regeneration induced by intra-articular injection of meniscus stem cells,” Stem Cells and Development, vol. 22, no. 14, pp. 2071–2082, 2013. View at Publisher · View at Google Scholar · View at Scopus
  121. Y. Qi, Z. Yang, Q. Ding, T. Zhao, Z. Huang, and G. Feng, “Targeted transplantation of iron oxide-labeled, adipose-derived mesenchymal stem cells in promoting meniscus regeneration following a rabbit massive meniscal defect,” Experimental and Therapeutic Medicine, vol. 11, no. 2, pp. 458–466, 2016. View at Publisher · View at Google Scholar · View at Scopus
  122. D. Drazin, J. Rosner, P. Avalos, and F. Acosta, “Stem cell therapy for degenerative disc disease,” Advances in Orthopedics, vol. 2012, Article ID 961052, 8 pages, 2012. View at Publisher · View at Google Scholar
  123. B. J. C. Freeman, J. S. Kuliwaba, C. F. Jones et al., “Allogeneic mesenchymal precursor cells promote healing in postero-lateral annular lesions and improve indices of lumbar intervertebral disc degeneration in an ovine model,” Spine, vol. 41, no. 17, pp. 1331–1339, 2016. View at Publisher · View at Google Scholar · View at Scopus
  124. Y.-M. Pers, M. Ruiz, D. Noël, and C. Jorgensen, “Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives,” Osteoarthritis and Cartilage, vol. 23, no. 11, pp. 2027–2035, 2015. View at Publisher · View at Google Scholar · View at Scopus
  125. M. B. Murphy, K. Moncivais, and A. I. Caplan, “Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine,” Experimental and Molecular Medicine, vol. 45, article e54, 2013. View at Publisher · View at Google Scholar · View at Scopus
  126. M. M.-G. Sun and F. Beier, “Chondrocyte hypertrophy in skeletal development, growth, and disease,” Birth Defects Research Part C—Embryo Today: Reviews, vol. 102, no. 1, pp. 74–82, 2014. View at Publisher · View at Google Scholar · View at Scopus
  127. R. A. Somoza, J. F. Welter, D. Correa, and A. I. Caplan, “Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations,” Tissue Engineering Part B: Reviews, vol. 20, no. 6, pp. 596–608, 2014. View at Publisher · View at Google Scholar · View at Scopus