Table of Contents Author Guidelines Submit a Manuscript
Stem Cells International
Volume 2017 (2017), Article ID 5946527, 11 pages
https://doi.org/10.1155/2017/5946527
Research Article

Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells

1Tissue and Neuronal Regeneration Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
2Unidad de Artroscopia y Unidad de Traumatología del Hospital Quiron, Barcelona, Spain
3Fundación García Cugat, Barcelona, Spain
4FactorStem Ltd., Valencia, Spain

Correspondence should be addressed to Victoria Moreno-Manzano; se.fpic@moneromv

Received 30 May 2017; Revised 25 July 2017; Accepted 5 September 2017; Published 15 November 2017

Academic Editor: Xuekun Li

Copyright © 2017 Maravillas Mellado-López et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. E. Kokai, K. Marra, and J. P. Rubin, “Adipose stem cells: biology and clinical applications for tissue repair and regeneration,” Translational Research, vol. 163, no. 4, pp. 399–408, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. D. C. Colter, R. Class, C. M. DiGirolamo, and D. J. Prockop, “Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 7, pp. 3213–3218, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. B. A. Bunnell, M. Flaat, C. Gagliardi, B. Patel, and C. Ripoll, “Adipose-derived stem cells: isolation, expansion and differentiation,” Methods, vol. 45, no. 2, pp. 115–120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Riis, V. Zachar, S. Boucher, M. C. Vemuri, C. P. Pennisi, and T. Fink, “Critical steps in the isolation and expansion of adipose-derived stem cells for translational therapy,” Expert Reviews in Molecular Medicine, vol. 17, article e11, 2015. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Astori, E. Amati, F. Bambi et al., “Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future,” Stem Cell Research & Therapy, vol. 7, no. 1, p. 93, 2016. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Chieregato, S. Castegnaro, D. Madeo, G. Astori, M. Pegoraro, and F. Rodeghiero, “Epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor-bb can substitute for fetal bovine serum and compete with human platelet-rich plasma in the ex vivo expansion of mesenchymal stromal cells derived from adipose tissue,” Cytotherapy, vol. 13, no. 8, pp. 933–943, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. J. Griffeth, D. García-Párraga, M. Mellado-López et al., “Platelet-rich plasma and adipose-derived mesenchymal stem cells for regenerative medicine-associated treatments in bottlenose dolphins (Tursiops truncatus),” PLoS One, vol. 9, no. 9, article e108439, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. F. J. Rodríguez-Jiménez, T. Valdes-Sánchez, J. M. Carrillo et al., “Platelet-rich plasma favors proliferation of canine adipose-derived mesenchymal stem cells in methacrylate-endcapped caprolactone porous scaffold niches,” Journal of Functional Biomaterials, vol. 3, no. 3, pp. 556–568, 2012. View at Publisher · View at Google Scholar
  9. S. Mohammadi, M. Nikbakht, A. Malek Mohammadi et al., “Human platelet lysate as a xeno free alternative of fetal bovine serum for the in vitro expansion of human mesenchymal stromal cells,” International Journal of Hematology-Oncology and Stem Cell Research, vol. 10, no. 3, pp. 161–171, 2016. View at Google Scholar
  10. P. Borrione, A. D. Gianfrancesco, M. T. Pereira, and F. Pigozzi, “Platelet-rich plasma in muscle healing,” American Journal of Physical Medicine & Rehabilitation, vol. 89, no. 10, pp. 854–861, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. J. Meheux, P. C. McCulloch, D. M. Lintner, K. E. Varner, and J. D. Harris, “Efficacy of intra-articular platelet-rich plasma injections in knee osteoarthritis: a systematic review,” Arthroscopy, vol. 32, no. 3, pp. 495–505, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. R. E. Marx, “Platelet-rich plasma: evidence to support its use,” Journal of Oral and Maxillofacial Surgery, vol. 62, no. 4, pp. 489–496, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. B. L. Eppley, W. S. Pietrzak, and M. Blanton, “Platelet-rich plasma: a review of biology and applications in plastic surgery,” Plastic and Reconstructive Surgery, vol. 118, no. 6, pp. 147e–159e, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Anitua, C. Carda, and I. Andia, “A novel drilling procedure and subsequent bone autograft preparation: a technical note,” The International Journal of Oral & Maxillofacial Implants, vol. 22, no. 1, pp. 138–145, 2007. View at Google Scholar
  15. P. Niemeyer, K. Fechner, S. Milz et al., “Comparison of mesenchymal stem cells from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma,” Biomaterials, vol. 31, no. 13, pp. 3572–3579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. G. J. Hausman and R. L. Richardson, “Adipose tissue angiogenesis,” Journal of Animal Science, vol. 82, no. 3, pp. 925–934, 2004. View at Publisher · View at Google Scholar
  18. J. G. Neels, T. Thinnes, and D. J. Loskutoff, “Angiogenesis in an in vivo model of adipose tissue development,” The FASEB Journal, vol. 18, no. 9, pp. 983–985, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. V. Kevy and M. S. Jacobson, “Comparison of methods for point of care preparation of autologous platelet gel,” The Journal of Extra-Corporeal Technology, vol. 36, no. 1, pp. 28–35, 2004. View at Google Scholar
  20. M. Tobita, S. Tajima, and H. Mizuno, “Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: stem cell transplantation methods that enhance stemness,” Stem Cell Research & Therapy, vol. 6, p. 215, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. R. X. Wu, Y. Yu, Y. Yin, X. Y. Zhang, L. N. Gao, and F. M. Chen, “Platelet lysate supports the in vitro expansion of human periodontal ligament stem cells for cytotherapeutic use,” Journal of Tissue Engineering and Regenerative Medicine, vol. 11, no. 8, pp. 2261–2275, 2016. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Burnouf, D. Strunk, M. B. Koh, and K. Schallmoser, “Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation?” Biomaterials, vol. 76, pp. 371–387, 2016. View at Publisher · View at Google Scholar · View at Scopus
  23. J. van den Dolder, R. Mooren, A. P. Vloon, P. J. Stoelinga, and J. A. Jansen, “Platelet-rich plasma: quantification of growth factor levels and the effect on growth and differentiation of rat bone marrow cells,” Tissue Engineering, vol. 12, no. 11, pp. 3067–3073, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. R. J. do Amaral, A. Matsiko, M. R. Tomazette et al., “Platelet-rich plasma releasate differently stimulates cellular commitment toward the chondrogenic lineage according to concentration,” Journal of Tissue Engineering, vol. 6, 2015. View at Publisher · View at Google Scholar
  25. K. Mareschi, I. Ferrero, D. Rustichelli et al., “Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow,” Journal of Cellular Biochemistry, vol. 97, no. 4, pp. 744–754, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. B. Mueller, M. Fischer, J. Zellner et al., “Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-β isoforms and chondrogenic conditioning,” Cells Tissues Organs, vol. 192, no. 3, pp. 158–166, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. J. L. Simonsen, C. Rosada, N. Serakinci et al., “Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells,” Nature Biotechnology, vol. 20, no. 6, pp. 592–596, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Shi, S. Gronthos, S. Chen et al., “Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression,” Nature Biotechnology, vol. 20, no. 6, pp. 587–591, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. B. D. Manning and L. C. Cantley, “AKT/PKB signaling: navigating downstream,” Cell, vol. 129, no. 7, pp. 1261–1274, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Peng, S. Huang, Y. Wu et al., “Platelet rich plasma clot releasate preconditioning induced PI3K/AKT/NFκB signaling enhances survival and regenerative function of rat bone marrow mesenchymal stem cells in hostile microenvironments,” Stem Cells and Development, vol. 22, no. 24, pp. 3236–3251, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. A. M. Bader, K. Klose, K. Bieback et al., “Hypoxic preconditioning increases survival and pro-angiogenic capacity of human cord blood mesenchymal stromal cells in vitro,” PLoS One, vol. 10, no. 9, article e0138477, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. J. L. Martindale and N. J. Holbrook, “Cellular response to oxidative stress: signaling for suicide and survival,” Journal of Cellular Physiology, vol. 192, no. 1, pp. 1–15, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Muñoz-Criado, J. Meseguer-Ripolles, M. Mellado-López et al., “Human suprapatellar fat pad-derived mesenchymal stem cells induce chondrogenesis and cartilage repair in a model of severe osteoarthritis,” Stem Cells International, vol. 2017, Article ID 4758930, 12 pages, 2017. View at Publisher · View at Google Scholar
  34. S. T. Johnston, J. V. Ross, B. J. Binder, D. L. Sean McElwain, P. Haridas, and M. J. Simpson, “Quantifying the effect of experimental design choices for in vitro scratch assays,” Journal of Theoretical Biology, vol. 400, pp. 19–31, 2016. View at Publisher · View at Google Scholar · View at Scopus
  35. S. T. Johnston, E. T. Shah, L. K. Chopin, D. L. Sean McElwain, and M. J. Simpson, “Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOM™ assay data using the Fisher-Kolmogorov model,” BMC Systems Biology, vol. 9, p. 38, 2015. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Debacq-Chainiaux, J. D. Erusalimsky, J. Campisi, and O. Toussaint, “Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo,” Nature Protocols, vol. 4, no. 12, pp. 1798–1806, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. P. Johnson, J. M. Catania, R. J. Harman, and E. D. Jensen, “Adipose-derived stem cell collection and characterization in bottlenose dolphins (Tursiops truncatus),” Stem Cells and Development, vol. 21, no. 16, pp. 2949–2957, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Wagner, S. Bork, P. Horn et al., “Aging and replicative senescence have related effects on human stem and progenitor cells,” PLoS One, vol. 4, no. 6, article e5846, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. J.-P. Coppé, C. K. Patil, F. Rodier et al., “Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor,” PLoS Biology, vol. 6, no. 12, article e301, 2008. View at Publisher · View at Google Scholar
  40. D. C. Rubinsztein, G. Marino, and G. Kroemer, “Autophagy and aging,” Cell, vol. 146, no. 5, pp. 682–695, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Kang, J. Han, S. Y. Song et al., “Lysophosphatidic acid increases the proliferation and migration of adipose-derived stem cells via the generation of reactive oxygen species,” Molecular Medicine Reports, vol. 12, no. 4, pp. 5203–5210, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Kang, S. M. Kim, and J. H. Sung, “Cellular and molecular stimulation of adipose-derived stem cells under hypoxia,” Cell Biology International, vol. 38, no. 5, pp. 553–562, 2014. View at Publisher · View at Google Scholar · View at Scopus
  43. G. V. Chaitanya, A. J. Steven, and P. P. Babu, “PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration,” Cell Communication and Signaling, vol. 8, p. 31, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Lin, M. Garcia, H. Ning et al., “Defining stem and progenitor cells within adipose tissue,” Stem Cells and Development, vol. 17, no. 6, pp. 1053–1063, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. E. M. Horwitz, K. Le Blanc, M. Dominici et al., “Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement,” Cytotherapy, vol. 7, no. 5, pp. 393–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. V. Cervelli, M. G. Scioli, P. Gentile et al., “Platelet-rich plasma greatly potentiates insulin-induced adipogenic differentiation of human adipose-derived stem cells through a serine/threonine kinase Akt-dependent mechanism and promotes clinical fat graft maintenance,” Stem Cells Translational Medicine, vol. 1, no. 3, pp. 206–220, 2012. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Tajima, M. Tobita, H. Orbay, H. Hyakusoku, and H. Mizuno, “Direct and indirect effects of a combination of adipose-derived stem cells and platelet-rich plasma on bone regeneration,” Tissue Engineering Part A, vol. 21, no. 5-6, pp. 895–905, 2015. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Li, F. Li, J. Li et al., “Increased survival of human free fat grafts with varying densities of human adipose-derived stem cells and platelet-rich plasma,” Journal of Tissue Engineering and Regenerative Medicine, vol. 11, no. 1, pp. 209–219, 2017. View at Publisher · View at Google Scholar · View at Scopus
  49. F. Hildner, C. Albrecht, C. Gabriel, H. Redl, and M. van Griensven, “State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products,” Journal of Tissue Engineering and Regenerative Medicine, vol. 5, no. 4, pp. e36–e51, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. I. M. Conboy, M. J. Conboy, A. J. Wagers, E. R. Girma, I. L. Weissman, and T. A. Rando, “Rejuvenation of aged progenitor cells by exposure to a young systemic environment,” Nature, vol. 433, no. 7027, pp. 760–764, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Sinha, Y. C. Jang, J. Oh et al., “Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle,” Science, vol. 344, no. 6184, pp. 649–652, 2014. View at Publisher · View at Google Scholar · View at Scopus
  52. F. S. Loffredo, M. L. Steinhauser, S. M. Jay et al., “Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy,” Cell, vol. 153, no. 4, pp. 828–839, 2013. View at Publisher · View at Google Scholar · View at Scopus
  53. J. L. Bueno, M. Ynigo, C. de Miguel et al., “Growth differentiation factor 11 (GDF11) - a promising anti-ageing factor - is highly concentrated in platelets,” Vox Sanguinis, vol. 111, no. 4, pp. 434–436, 2016. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Nakashima, K. Mizunuma, T. Murakami, and A. Akamine, “Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11),” Gene Therapy, vol. 9, no. 12, pp. 814–818, 2002. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Liu-Bryan and R. Terkeltaub, “Emerging regulators of the inflammatory process in osteoarthritis,” Nature Reviews Rheumatology, vol. 11, no. 1, pp. 35–44, 2015. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Maumus, C. Manferdini, K. Toupet et al., “Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis,” Stem Cell Research, vol. 11, no. 2, pp. 834–844, 2013. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Mobasheri and Y. Henrotin, “Identification, validation and qualification of biomarkers for osteoarthritis in humans and companion animals: mission for the next decade,” The Veterinary Journal, vol. 185, no. 2, pp. 95–97, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. J. M. Vilar, M. Morales, A. Santana et al., “Controlled, blinded force platform analysis of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells associated to PRGF-Endoret in osteoarthritic dogs,” BMC Veterinary Research, vol. 9, p. 131, 2013. View at Publisher · View at Google Scholar · View at Scopus
  59. J. M. Vilar, M. Batista, M. Morales et al., “Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis,” BMC Veterinary Research, vol. 10, no. 1, p. 143, 2014. View at Publisher · View at Google Scholar · View at Scopus