Table of Contents Author Guidelines Submit a Manuscript
Scientifica
Volume 2013, Article ID 637629, 30 pages
http://dx.doi.org/10.1155/2013/637629
Review Article

Genetics of Proteasome Diseases

1Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA 95616, USA
2Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA

Received 20 October 2013; Accepted 18 November 2013

Academic Editors: I. Alvarez, M. Cardelli, N. Osna, M. Salio, and T. Vellai

Copyright © 2013 Aldrin V. Gomes. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Li, H. J. Kung, P. C. Mack, and D. R. Gandara, “Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies,” Journal of Clinical Oncology, vol. 31, pp. 1039–1049, 2013. View at Google Scholar
  2. W. W. Soon, M. Hariharan, and M. P. Snyder, “High-throughput sequencing for biology and medicine,” Molecular Systems Biology, vol. 9, article 640, 2013. View at Google Scholar
  3. Z. Wang, X. Liu, B. Z. Yang, and J. Gelernter, “The role and challenges of exome sequencing in studies of human diseases,” Frontiers in Genetics, vol. 4, article 160, 2013. View at Google Scholar
  4. A. R. Wood, J. R. Perry, T. Tanaka et al., “Imputation of variants from the 1000 Genomes Project modestly improves known associations and can identify low-frequency variant-phenotype associations undetected by HapMap based imputation,” PLoS ONE, vol. 8, Article ID e64343, 2013. View at Google Scholar
  5. G. R. Abecasis, D. Altshuler, A. Auton et al., “A map of human genome variation from population-scale sequencing,” Nature, vol. 467, pp. 1061–1073, 2010. View at Google Scholar
  6. HapMap Consortium, “The international HapMap project,” Nature, vol. 426, pp. 789–796, 2003. View at Google Scholar
  7. A. Ciechanover, “Intracellular protein degradation: from a vague idea through the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting,” Bioorganic & Medicinal Chemistry, vol. 21, pp. 3400–3410, 2013. View at Google Scholar
  8. M. Schmidt and D. Finley, “Regulation of proteasome activity in health and disease,” Biochimica Et Biophysica Acta, vol. 1843, no. 1, pp. 13–25, 2013. View at Google Scholar
  9. E. Jankowska, J. Stoj, P. Karpowicz, P. A. Osmulski, and M. Gaczynska, “The proteasome in health and disease,” Current Pharmaceutical Design, vol. 19, pp. 1010–1028, 2013. View at Google Scholar
  10. F. Bassermann, R. Eichner, and M. Pagano, “The ubiquitin proteasome system—implications for cell cycle control and the targeted treatment of cancer,” Biochimica Et Biophysica Acta, vol. 1843, no. 1, pp. 150–162, 2013. View at Publisher · View at Google Scholar
  11. A. Ciechanover and A. Stanhill, “The complexity of recognition of ubiquitinated substrates by the 26S proteasome,” Biochimica Et Biophysica Acta, vol. 1843, no. 1, pp. 86–96, 2013. View at Publisher · View at Google Scholar
  12. G. Carrard, A.-L. Bulteau, I. Petropoulos, and B. Friguet, “Impairment of proteasome structure and function in aging,” International Journal of Biochemistry and Cell Biology, vol. 34, no. 11, pp. 1461–1474, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. V. A. Vernace, T. Schmidt-Glenewinkel, and M. E. Figueiredo-Pereira, “Aging and regulated protein degradation: who has the UPPer hand?” Aging Cell, vol. 6, no. 5, pp. 599–606, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Dasuri, L. Zhang, P. Ebenezer, Y. Liu, S. O. Fernandez-Kim, and J. N. Keller, “Aging and dietary restriction alter proteasome biogenesis and composition in the brain and liver,” Mechanisms of Ageing and Development, vol. 130, no. 11-12, pp. 777–783, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Chondrogianni, I. Petropoulos, C. Franceschi, B. Friguet, and E. S. Gonos, “Fibroblast cultures from healthy centenarians have an active proteasome,” Experimental Gerontology, vol. 35, no. 6-7, pp. 721–728, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. V. I. Pérez, R. Buffenstein, V. Masamsetti et al., “Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3059–3064, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. R. Hipkiss, “Accumulation of altered proteins and ageing: causes and effects,” Experimental Gerontology, vol. 41, no. 5, pp. 464–473, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Niu, R. Lei, J. Shi et al., “A polymorphism rs17336700 in the PSMD7 gene is associated with ankylosing spondylitis in Chinese subjects,” Annals of the Rheumatic Diseases, vol. 70, no. 4, pp. 706–707, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Tonoki, E. Kuranaga, T. Tomioka et al., “Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process,” Molecular and Cellular Biology, vol. 29, no. 4, pp. 1095–1106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Ghazi, S. Henis-Korenblit, and C. Kenyon, “Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 5947–5952, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. V. Gomes, C. Zong, and P. Ping, “Protein degradation by the 26S proteasome system in the normal and stressed myocardium,” Antioxidants and Redox Signaling, vol. 8, no. 9-10, pp. 1677–1691, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. R. J. Tomko Jr. and M. Hochstrasser, “Molecular architecture and assembly of the eukaryotic proteasome,” Annual Review of Biochemistry, vol. 82, pp. 415–445, 2013. View at Google Scholar
  23. E. Kish-Trier and C. P. Hill, “Structural biology of the proteasome,” Annual Review of Biophysics, vol. 42, pp. 29–49, 2013. View at Google Scholar
  24. J. Hamazaki, K. Sasaki, H. Kawahara, S.-I. Hisanaga, K. Tanaka, and S. Murata, “Rpn10-mediated degradation of ubiquitinated proteins is essential for mouse development,” Molecular and Cellular Biology, vol. 27, no. 19, pp. 6629–6638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Bedford, D. Hay, A. Devoy et al., “Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and lewy-like inclusions resembling human pale bodies,” Journal of Neuroscience, vol. 28, no. 33, pp. 8189–8198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Finley, “Recognition and processing of ubiquitin-protein conjugates by the proteasome,” Annual Review of Biochemistry, vol. 78, pp. 477–513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Divald, S. Kivity, P. Wang et al., “Myocardial ischemic preconditioning preserves postischemic function of the 26S proteasome through diminished oxidative damage to 19S regulatory particle subunits,” Circulation Research, vol. 106, no. 12, pp. 1829–1838, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Blickwedehl, S. Olejniczak, R. Cummings et al., “The proteasome activator PA200 regulates tumor cell responsiveness to glutamine and resistance to ionizing radiation,” Molecular Cancer Research, vol. 10, pp. 937–944, 2012. View at Google Scholar
  29. A. M. Pickering and K. J. Davies, “Differential roles of proteasome and immunoproteasome regulators Pa28alphabeta, Pa28gamma and Pa200 in the degradation of oxidized proteins,” Archives of Biochemistry and Biophysics, vol. 523, pp. 181–190, 2012. View at Google Scholar
  30. M. Sugiyama, H. Sahashi, E. Kurimoto et al., “Spatial arrangement and functional role of alpha subunits of proteasome activator PA28 in hetero-oligomeric form,” Biochemical and Biophysical Research Communications, vol. 432, pp. 141–145, 2013. View at Google Scholar
  31. D. M. W. Zaiss, S. Standera, H. Holzhütter, P.-M. Kloetzel, and A. J. A. M. Sijts, “The proteasome inhibitor PI31 competes with PA28 for binding to 20S proteasomes,” FEBS Letters, vol. 457, no. 3, pp. 333–338, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. D. M. W. Zaiss, S. Standera, P.-M. Kloetzel, and A. J. A. M. Sijts, “PI31 is a modulator of proteasome formation and antigen processing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 22, pp. 14344–14349, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. M. X. Qian, Y. Pang, C. H. Liu et al., “Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis,” Cell, vol. 153, pp. 1012–1024, 2013. View at Google Scholar
  34. S. Murata, K. Sasaki, T. Kishimoto et al., “Regulation of CD8+ T cell development by thymus-specific proteasomes,” Science, vol. 316, no. 5829, pp. 1349–1353, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. Y. Xing, S. C. Jameson, and K. A. Hogquist, “Thymoproteasome subunit-beta5T generates peptide-MHC complexes specialized for positive selection,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. 6979–6984, 2013. View at Google Scholar
  36. D. S. Gerhard, “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC),” Genome Research B, vol. 14, no. 10, pp. 2121–2127, 2004. View at Google Scholar · View at Scopus
  37. F. Bey, I. Silva Pereira, O. Coux et al., “The prosomal RNA-binding protein p27K is a member of the α-type human prosomal gene family,” Molecular and General Genetics, vol. 237, no. 1-2, pp. 193–205, 1993. View at Google Scholar · View at Scopus
  38. Online Mendelian Inheritance in Man and OMIM, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Md, USA, 2013.
  39. T. Sjöblom, S. Jones, L. D. Wood et al., “The consensus coding sequences of human breast and colorectal cancers,” Science, vol. 314, no. 5797, pp. 268–274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. H. Akioka, N. E. Forsberg, N. Ishida et al., “Isolation and characterization of the HC8 subunit gene of the human proteasome,” Biochemical and Biophysical Research Communications, vol. 207, no. 1, pp. 318–323, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. C. I. Amos, X. Wu, P. Broderick et al., “Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1,” Nature Genetics, vol. 40, no. 5, pp. 616–622, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Mayau, B. Baron, G. Buttin, and M. Debatisse, “Twelve genes, including the unassigned proteasome ζ subunit gene, ordered within the human 1p13 region,” Mammalian Genome, vol. 9, no. 4, pp. 331–333, 1998. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Hinohara, T. Nakajima, T. Sasaoka et al., “Replication studies for the association of PSMA6 polymorphism with coronary artery disease in East Asian populations,” Journal of Human Genetics, vol. 54, no. 4, pp. 248–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. P. Flicek, I. Ahmed, M. R. Amode et al., “Ensembl 2013,” Nucleic Acids Research, vol. 41, pp. D48–D55, 2013. View at Google Scholar
  45. J. de Ligt, M. H. Willemsen, B. W. van Bon et al., “Diagnostic exome sequencing in persons with severe intellectual disability,” The New England Journal of Medicine, vol. 367, pp. 1921–1929, 2012. View at Google Scholar
  46. M. Magrane and U. Consortium, “UniProt Knowledgebase: a hub of integrated protein data,” Database, vol. 2011, p. bar009, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. Z. Trachtulec, R. M. J. Hamvas, J. Forejt, H. R. Lehrach, V. Vincek, and J. Klein, “Linkage of TATA-binding protein and proteasome subunit C5 genes in mice and humans reveals synteny conserved between mammals and invertebrates,” Genomics, vol. 44, no. 1, pp. 1–7, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. D. McCusker, T. Jones, D. Sheer, and J. Trowsdale, “Genetic relationships of the genes encoding the human proteasome β subunits and the proteasome PA28 complex,” Genomics, vol. 45, no. 2, pp. 362–367, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. H. G. Nothwang, T. Tamura, K. Tanaka, and A. Ichihara, “Sequence analyses and inter-species comparisons of three novel human proteasomal subunits, HsN3, HsC7-I and HsC10-II, confine potential proteolytic active-site residues,” Biochimica et Biophysica Acta, vol. 1219, no. 2, pp. 361–368, 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Ota, Y. Suzuki, T. Nishikawa et al., “Complete sequencing and characterization of 21,243 full-length human cDNAs,” Nature Genetics, vol. 36, pp. 40–45, 2004. View at Google Scholar
  51. W. L. H. Gerards, “Cloning and expression of a human pro(tea)some β-subunit cDNA: a homologue of the yeast PRE4-subunit essential for peptidylglutamyl-peptide hydrolase activity,” FEBS Letters, vol. 346, no. 2-3, pp. 151–155, 1994. View at Publisher · View at Google Scholar · View at Scopus
  52. M. P. Belich, R. J. Glynne, G. Senger, D. Sheer, and J. Trowsdale, “Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins,” Current Biology, vol. 4, no. 9, pp. 769–776, 1994. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Hisamatsu, N. Shimbara, Y. Saito et al., “Newly identified pair of proteasomal subunits regulated reciprocally by interferon γ,” Journal of Experimental Medicine, vol. 183, no. 4, pp. 1807–1816, 1996. View at Publisher · View at Google Scholar · View at Scopus
  54. A. K. Agarwal, C. Xing, G. N. Demartino et al., “PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome,” American Journal of Human Genetics, vol. 87, no. 6, pp. 866–872, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. Y. Liu, Y. Ramot, A. Torrelo et al., “Mutations in proteasome subunit β type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity,” Arthritis and Rheumatism, vol. 64, no. 3, pp. 895–907, 2012. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Kitamura, Y. Maekawa, H. Uehara et al., “A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans,” Journal of Clinical Investigation, vol. 121, no. 10, pp. 4150–4160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Arima, A. Kinoshita, H. Mishima et al., “Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 36, pp. 14914–14919, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Kelly, S. H. Powis, R. Glynne, E. Radley, S. Beck, and J. Trowsdale, “Second proteasome-related gene in the human MHC class II region,” Nature, vol. 353, no. 6345, pp. 667–668, 1991. View at Publisher · View at Google Scholar · View at Scopus
  59. D. A. Chistyakov, K. V. Savost'anov, R. I. Turakulov et al., “Complex association analysis of graves disease using a set of polymorphic markers,” Molecular Genetics and Metabolism, vol. 70, no. 3, pp. 214–218, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. H. Wang, M. Jiang, H. Zhu et al., “Quantitative assessment of the influence of PSMA6 variant (rs1048990) on coronary artery disease risk,” Molecular Biology Reports, vol. 40, pp. 1035–1041, 2013. View at Google Scholar
  61. N. Tanahashi, M. Suzuki, T. Fujiwara et al., “Chromosomal localization and immunological analysis of a family of human 26S proteasomal ATPases,” Biochemical and Biophysical Research Communications, vol. 243, no. 1, pp. 229–232, 1998. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Gridley, R. Jaenisch, and M. Gendron-Maguire, “The murine Mov-34 gene: full-length cDNA and genomic organization,” Genomics, vol. 11, no. 3, pp. 501–507, 1991. View at Google Scholar · View at Scopus
  63. A.-G. Wang, S. Y. Yoon, J.-H. Oh et al., “Identification of intrahepatic cholangiocarcinoma related genes by comparison with normal liver tissues using expressed sequence tags,” Biochemical and Biophysical Research Communications, vol. 345, no. 3, pp. 1022–1032, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. T. R. Burkard, M. Planyavsky, I. Kaupe et al., “Initial characterization of the human central proteome,” BMC Systems Biology, vol. 5, article 17, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. T. K. Watanabe, A. Saito, M. Suzuki et al., “cDNA cloning and characterization of a human proteasomal modulator subunit, p27 (PSMD9),” Genomics, vol. 50, no. 2, pp. 241–250, 1998. View at Publisher · View at Google Scholar · View at Scopus
  66. L. Hoffman, C. Gorbea, and M. Rechsteiner, “Identification, molecular cloning, and characterization of subunit 11 of the human 26S proteasome,” FEBS Letters, vol. 449, no. 1, pp. 88–92, 1999. View at Publisher · View at Google Scholar · View at Scopus
  67. X. Wang, C.-F. Chen, P. R. Baker, P.-L. Chen, P. Kaiser, and L. Huang, “Mass spectrometric characterization of the affinity-purified human 26S proteasome complex,” Biochemistry, vol. 46, no. 11, pp. 3553–3565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. D. A. Benson, M. Cavanaugh, K. Clark et al., “GenBank,” Nucleic Acids Research, vol. 41, pp. D36–D42, 2013. View at Google Scholar
  69. D. McCusker, M. Wilson, and J. Trowsdale, “Organization of the genes encoding the human proteasome activators PA28α and β,” Immunogenetics, vol. 49, no. 5, pp. 438–445, 1999. View at Publisher · View at Google Scholar · View at Scopus
  70. H. M. Albertsen, S. A. Smith, S. Mazoyer et al., “A physical map and candidate genes in the BRCA1 region on chromosome 17q12-21,” Nature Genetics, vol. 7, no. 4, pp. 472–479, 1994. View at Publisher · View at Google Scholar · View at Scopus
  71. S. L. McCutchen-Maloney, K. Matsuda, N. Shimbara et al., “cDNA cloning, expression, and functional characterization of PI31, a proline-rich inhibitor of the proteasome,” Journal of Biological Chemistry, vol. 275, no. 24, pp. 18557–18565, 2000. View at Publisher · View at Google Scholar · View at Scopus
  72. M. G. Heckman, A. I. Soto-Ortolaza, N. N. Diehl et al., “Genetic variants associated with myocardial infarction in the PSMA6 gene and Chr9p21 are also associated with ischaemic stroke,” European Journal of Neurology, vol. 20, pp. 300–308, 2013. View at Google Scholar
  73. X. Liu, X. Wang, Y. Shen et al., “The functional variant rs1048990 in PSMA6 is associated with susceptibility to myocardial infarction in a Chinese population,” Atherosclerosis, vol. 206, no. 1, pp. 199–203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Liu, X. J. Yuan, J. X. Liu et al., “Validation of the association between PSMA6 -8 C/G polymorphism and type 2 diabetes mellitus in Chinese Dongxiang and Han populations,” Diabetes Research and Clinical Practice, vol. 98, pp. 295–301, 2012. View at Google Scholar
  75. M. Barbieri, R. Marfella, M. R. Rizzo et al., “The -8 UTR C/G polymorphism of PSMA6 gene is associated with susceptibility to myocardial infarction in type 2 diabetic patients,” Atherosclerosis, vol. 201, no. 1, pp. 117–123, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. J. S. Zheng, D. K. Arnett, L. D. Parnell et al., “Genetic variants at PSMD3 interact with dietary fat and carbohydrate to modulate insulin resistance,” The Journal of Nutrition, vol. 143, pp. 354–361, 2013. View at Google Scholar
  77. A. Torrelo, S. Patel, I. Colmenero et al., “Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome,” Journal of the American Academy of Dermatology, vol. 62, no. 3, pp. 489–495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Lv, B. Yan, H. Yang et al., “LMP2/LMP7 gene variant: a risk factor for intestinal Mycobacterium tuberculosis infection in the Chinese population,” Journal of Gastroenterology and Hepatology, vol. 26, no. 7, pp. 1145–1150, 2011. View at Publisher · View at Google Scholar · View at Scopus
  79. B. Fellerhoff, S. Gu, B. Laumbacher et al., “The LMP7-K allele of the immunoproteasome exhibits reduced transcript stability and predicts high risk of colon cancer,” Cancer Research, vol. 71, no. 23, pp. 7145–7154, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Fraile, A. Nieto, J. Vinasco, Y. Beraun, J. Martin, and L. Mataran, “Association of large molecular weight proteasome 7 gene polymorphism with ankylosing spondylitis,” Arthritis and Rheumatism, vol. 41, pp. 560–562, 1998. View at Google Scholar
  81. G. Y. Deng, A. Muir, N. K. Maclaren, and J.-X. She, “Association of LMP2 and LMP7 genes within the major histocompatibility complex with insulin-dependent diabetes mellitus: population and family studies,” American Journal of Human Genetics, vol. 56, no. 2, pp. 528–534, 1995. View at Google Scholar · View at Scopus
  82. J. M. Heward, A. Allahabadia, M. C. Sheppard, A. H. Barnett, J. A. Franklyn, and S. C. L. Gough, “Association of the large multifunctional proteasome (LMP2) gene with Graves' disease is a result of linkage disequilibrium with the HLA haplotype DRB1*0304-DQB1*02-DQA1*0501,” Clinical Endocrinology, vol. 51, no. 1, pp. 115–118, 1999. View at Publisher · View at Google Scholar · View at Scopus
  83. W. P. Maksymowych, M. Suarez-Almazo, C.-T. Chou, and A. S. Russell, “Polymorphism in the LMP2 gene influences susceptibility to extraspinal disease in HLA-B27 positive individuals with ankylosing spondylitis,” Annals of the Rheumatic Diseases, vol. 54, no. 4, pp. 321–324, 1995. View at Google Scholar · View at Scopus
  84. C. Choudhary, C. Kumar, F. Gnad et al., “Lysine acetylation targets protein complexes and co-regulates major cellular functions,” Science, vol. 325, no. 5942, pp. 834–840, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. O. Alsmadi, P. Muiya, H. Khalak et al., “Haplotypes encompassing the KIAA0391 and PSMA6 gene cluster confer a genetic link for myocardial infarction and coronary artery disease,” Annals of Human Genetics, vol. 73, no. 5, pp. 475–483, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. T. Sjakste, M. Kalis, I. Poudziunas et al., “Association of microsatellite polymorphisms of the human 14q13.2 region with type 2 diabetes mellitus in Latvian and Finnish populations,” Annals of Human Genetics, vol. 71, no. 6, pp. 772–776, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. T. Sjakste, J. Eglite, A. Sochnevs et al., “Microsatellite genotyping of chromosome 14q13.2-14q13 in the vicinity of proteasomal gene PSMA6 and association with Graves' disease in the Latvian population,” Immunogenetics, vol. 56, no. 4, pp. 238–243, 2004. View at Google Scholar · View at Scopus
  88. M. Goujon, H. McWilliam, W. Li et al., “A new bioinformatics analysis tools framework at EMBL-EBI,” Nucleic Acids Research, vol. 38, no. 2, Article ID gkq313, pp. W695–W699, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. R. D. Page, “Visualizing phylogenetic trees using TreeView,” Current Protocols in Bioinformatics, chapter 6, unit 6.2, 2002. View at Publisher · View at Google Scholar
  90. J. Kang, S. Kugathasan, M. Georges, H. Zhao, and J. H. Cho, “Improved risk prediction for Crohn's disease with a multi-locus approach,” Human Molecular Genetics, vol. 20, no. 12, pp. 2435–2442, 2011. View at Publisher · View at Google Scholar · View at Scopus
  91. D. A. Bennett, P. Xu, R. Clarke et al., “The exon 1-8C/G SNP in the PSMA6 gene contributes only a small amount to the burden of myocardial infarction in 6946 cases and 2720 controls from a United Kingdom population,” European Journal of Human Genetics, vol. 16, no. 4, pp. 480–486, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. I. Banerjee, U. Pandey, O. M. Hasan, R. Parihar, V. Tripathi, and S. Ganesh, “Association between inflammatory gene polymorphisms and coronary artery disease in an Indian population,” Journal of Thrombosis and Thrombolysis, vol. 27, no. 1, pp. 88–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. H. S. Bachmann, J. Novotny, S. Sixt et al., “The G-Allele of the PSMA6-8C > G polymorphism is associated with poor outcome in multiple myeloma independently of circulating proteasome serum levels,” European Journal of Haematology, vol. 85, no. 2, pp. 108–113, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. V. Sundaresh, J. P. Brito, Z. Wang et al., “Comparative effectiveness of therapies for graves' hyperthyroidism: a systematic review and network meta-analysis,” The Journal of Clinical Endocrinology and Metabolism, vol. 98, pp. 3671–3677, 2013. View at Google Scholar
  95. P. E. Stuart, R. P. Nair, E. ELinghaus et al., “Genome-wide asociation analysis identifies three psoriasis susceptibility loci,” Nature Genetics, vol. 42, no. 11, pp. 1000–1004, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. X. Liu, W. Huang, C. Li et al., “Interaction between c-Abl and Arg tyrosine kinases and proteasome subunit PSMA7 regulates proteasome degradation,” Molecular Cell, vol. 22, no. 3, pp. 317–327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. M. Basler, C. J. Kirk, and M. Groettrup, “The immunoproteasome in antigen processing and other immunological functions,” Current Opinion in Immunology, vol. 25, pp. 74–80, 2013. View at Google Scholar
  98. D. A. Ferrington and D. S. Gregerson, “Immunoproteasomes: structure, function, and antigen presentation,” Progress in Molecular Biology and Translational Science, vol. 109, pp. 75–112, 2012. View at Google Scholar
  99. M. Gaczynska, K. L. Rock, and A. L. Goldberg, “γ-Interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes,” Nature, vol. 365, no. 6443, pp. 264–267, 1993. View at Publisher · View at Google Scholar · View at Scopus
  100. M. Schmidt, D. Zantopf, R. Kraft, S. Kostka, R. Preissner, and P.-M. Kloetzel, “Sequence information within proteasomal prosequences mediates efficient integration of β-subunits into the 20 S proteasome complex,” Journal of Molecular Biology, vol. 288, no. 1, pp. 117–128, 1999. View at Publisher · View at Google Scholar · View at Scopus
  101. E. Witt, D. Zantopf, M. Schmidt, R. Kraft, P.-M. Kloetzel, and E. Krüger, “Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(β5i) incorporation into 20 S proteasomes,” Journal of Molecular Biology, vol. 301, no. 1, pp. 1–9, 2000. View at Publisher · View at Google Scholar · View at Scopus
  102. H. J. Fehling, W. Swat, C. Laplace et al., “MHC class I expression in mice lacking the proteasome subunit LMP-7,” Science, vol. 265, no. 5176, pp. 1234–1237, 1994. View at Google Scholar · View at Scopus
  103. T. Muchamuel, M. Basler, M. A. Aujay et al., “A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis,” Nature Medicine, vol. 15, no. 7, pp. 781–787, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. A. Nakajo, “Secondary hypertrophic osteoperiostosis with pernio,” Journal of Dermatology and Urology, vol. 45, pp. 77–78, 1939. View at Google Scholar
  105. S. Kasagi, S. Kawano, T. Nakazawa et al., “A case of periodic-fever-syndrome-like disorder with lipodystrophy, myositis, and autoimmune abnormalities,” Modern Rheumatology, vol. 18, no. 2, pp. 203–207, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. M. Tanaka, N. Miyatani, S. Yamada et al., “Hereditary lipo-muscular atrophy with joint contracture, skin eruptions and hyper-gamma-globulinemia: a new syndrome,” Internal Medicine, vol. 32, no. 1, pp. 42–45, 1993. View at Google Scholar · View at Scopus
  107. Y. Kitano, E. Matsunaga, and T. Morimoto, “A syndrome with nodular erythema, elongated and thickened fingers, and emaciation,” Archives of Dermatology, vol. 121, no. 8, pp. 1053–1056, 1985. View at Publisher · View at Google Scholar · View at Scopus
  108. S. Prahalad, D. J. Kingsbury, T. A. Griffin et al., “Polymorphism in the MHC-encoded LMP7 gene: association with JRA without functional significance for immunoproteasome assembly,” Journal of Rheumatology, vol. 28, no. 10, pp. 2320–2325, 2001. View at Google Scholar · View at Scopus
  109. C. Henderson and R. Goldbach-Mansky, “Monogenic autoinflammatory diseases: new insights into clinical aspects and pathogenesis,” Current Opinion in Rheumatology, vol. 22, no. 5, pp. 567–578, 2010. View at Publisher · View at Google Scholar · View at Scopus
  110. Y. Ramot, T. Czarnowicki, A. Maly, P. Navon-Elkan, and A. Zlotogorski, “Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature syndrome: a case report,” Pediatric Dermatology, vol. 28, no. 5, pp. 538–541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  111. A. Goodman and M. Lipman, “Tuberculosis,” Clinical Medicine, vol. 8, pp. 531–534, 2008. View at Google Scholar
  112. Y. Kong, S. Subbian, S. L. G. Cirillo, and J. D. Cirillo, “Application of optical imaging to study of extrapulmonary spread by tuberculosis,” Tuberculosis, vol. 89, supplement 1, pp. S15–S17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  113. E. Z. Kincaid, J. W. Che, I. York et al., “Mice completely lacking immunoproteasomes show major changes in antigen presentation,” Nature Immunology, vol. 13, no. 2, pp. 129–135, 2012. View at Publisher · View at Google Scholar · View at Scopus
  114. D. A. Brewerton, F. D. Hart, A. Nicholls, M. Caffrey, D. C. James, and R. D. Sturrock, “Ankylosing spondylitis and HL-A 27,” The Lancet, vol. 1, no. 7809, pp. 904–907, 1973. View at Google Scholar · View at Scopus
  115. Z. Yang, D. Gagarin, G. St. Laurent et al., “Cardiovascular inflammation and lesion cell apoptosis: a novel connection via the interferon-inducible immunoproteasome,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 8, pp. 1213–1219, 2009. View at Publisher · View at Google Scholar · View at Scopus
  116. J. Driscoll, M. G. Brown, D. Finley, and J. J. Monaco, “MHC-linked LMP gene products specifically alter peptidase activities of the proteasome,” Nature, vol. 365, no. 6443, pp. 262–264, 1993. View at Publisher · View at Google Scholar · View at Scopus
  117. L. Van Kaer, P. G. Ashton-Rickardt, M. Eichelberger et al., “Altered peptidase and viral-specific T cell response in LMP2 mutant mice,” Immunity, vol. 1, no. 7, pp. 533–541, 1994. View at Google Scholar · View at Scopus
  118. F. R. Faucz, C. Macagnan Probst, and M. L. Petzl-Erler, “Polymorphism of LMP2, TAP1, LMP7 and TAP2 in Brazilian Amerindians and Caucasoids: implications for the evolution of allelic and haplotypic diversity,” European Journal of Immunogenetics, vol. 27, no. 1, pp. 5–16, 2000. View at Publisher · View at Google Scholar · View at Scopus
  119. G. Vargas-Alarcón, R. Gamboa, Y. Vergara et al., “LMP2 and LMP7 gene polymorphism in Mexican populations: mestizos and Amerindians,” Genes and Immunity, vol. 3, no. 6, pp. 373–377, 2002. View at Publisher · View at Google Scholar · View at Scopus
  120. M. Mishto, E. Bellavista, A. Santoro et al., “Immunoproteasome and LMP2 polymorphism in aged and Alzheimer's disease brains,” Neurobiology of Aging, vol. 27, no. 1, pp. 54–66, 2006. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Mishto, A. Santoro, E. Bellavista et al., “A structural model of 20S immunoproteasomes: effect of LMP2 codon 60 polymorphism on expression, activity, intracellular localisation and insight into the regulatory mechanisms,” Biological Chemistry, vol. 387, no. 4, pp. 417–429, 2006. View at Publisher · View at Google Scholar · View at Scopus
  122. J. E. Park, L. Ao, Z. Miller et al., “PSMB9 codon 60 polymorphisms have no impact on the activity of the immunoproteasome catalytic subunit B1i expressed in multiple types of solid cancer,” PLoS ONE, vol. 8, Article ID e73732, 2013. View at Google Scholar
  123. E. L. Webb, M. F. Rudd, G. S. Sellick et al., “Search for low penetrance alleles for colorectal cancer through a scan of 1467 non-synonymous SNPs in 2575 cases and 2707 controls with validation by kin-cohort analysis of 14 704 first-degree relatives,” Human Molecular Genetics, vol. 15, no. 21, pp. 3263–3271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  124. W. P. Maksymowych, T. Sha, J. Vaile, M. Suarez-Almazor, C. Ramos-Remus, and A. S. Russell, “LMP2 polymorphism is associated with extraspinal disease in HLA-B27 negative Caucasian and Mexican Mestizo patients with ankylosing spondylitis,” The Journal of Rheumatology, vol. 27, no. 1, pp. 183–189, 2000. View at Google Scholar · View at Scopus
  125. J. M. Olefsky and C. K. Glass, “Macrophages, inflammation, and insulin resistance,” Annual Review of Physiology, vol. 72, pp. 219–246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. G. Reaven, “Insulin resistance, hypertension, and coronary heart disease,” Journal of Clinical Hypertension, vol. 5, no. 4, pp. 269–274, 2003. View at Google Scholar · View at Scopus
  127. S. Rome, E. Meugnier, and H. Vidal, “The ubiquitin-proteasome pathway is a new partner for the control of insulin signaling,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 7, no. 3, pp. 249–254, 2004. View at Publisher · View at Google Scholar · View at Scopus
  128. D. Reich, M. A. Nalls, W. H. L. Kao et al., “Reduced neutrophil count in people of African descent is due to a regulatory variant in the Duffy antigen receptor for chemokines gene,” PLoS Genetics, vol. 5, no. 1, Article ID e1000360, 2009. View at Publisher · View at Google Scholar · View at Scopus
  129. P. E. Newburger and D. C. Dale, “Evaluation and management of patients with isolated neutropenia,” Seminars in Hematology, vol. 50, pp. 198–206, 2013. View at Google Scholar
  130. A. P. Reiner, G. Lettre, M. A. Nalls et al., “Genome-Wide association study of white blood cell count in 16,388 african americans: the continental Origins and Genetic Epidemiology network (COGENT),” PLoS Genetics, vol. 7, no. 6, Article ID e1002108, 2011. View at Publisher · View at Google Scholar · View at Scopus
  131. D. R. Crosslin, A. McDavid, N. Weston et al., “Genetic variants associated with the white blood cell count in 13,923 subjects in the eMERGE Network,” Human Genetics, vol. 131, pp. 639–652, 2012. View at Publisher · View at Google Scholar · View at Scopus
  132. Y. Okada, Y. Kamatani, A. Takahashi et al., “Common variations in PSMD3-CSF3 and PLCB4 are associated with neutrophil count,” Human Molecular Genetics, vol. 19, no. 10, pp. 2079–2085, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. C. Tsurumi, G. N. DeMartino, C. A. Slaughter, N. Shimbara, and K. Tanaka, “cDNA cloning of p40, a regulatory subunit of the human 26S proteasome, and a homolog of the Mov-34 gene product,” Biochemical and Biophysical Research Communications, vol. 210, no. 2, pp. 600–608, 1995. View at Publisher · View at Google Scholar · View at Scopus
  134. S. Mahalingam, V. Ayyavoo, M. Patel et al., “HIV-1 Vpr interacts with a human 34-kDa mov34 homologue, a cellular factor linked to the G2/M phase transition of the mammalian cell cycle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3419–3424, 1998. View at Publisher · View at Google Scholar · View at Scopus
  135. D. Bellizzi, S. Dato, P. Cavalcante et al., “Characterization of a bidirectional promoter shared between two human genes related to aging: SIRT3 and PSMD13,” Genomics, vol. 89, no. 1, pp. 143–150, 2007. View at Publisher · View at Google Scholar · View at Scopus
  136. K. Shameer, J. C. Denny, K. Ding et al., “A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects,” Human Genetics. In press. View at Google Scholar
  137. E. M. Cooper, C. Cutcliffe, T. Z. Kristiansen, A. Pandey, C. M. Pickart, and R. E. Cohen, “K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1,” The EMBO Journal, vol. 28, no. 6, pp. 621–631, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. L. R. Butler, R. M. Densham, J. Jia et al., “The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response,” The EMBO Journal, vol. 31, pp. 3918–3934, 2012. View at Google Scholar
  139. V. Spataro, T. Toda, R. Craig et al., “Resistance to diverse drugs and ultraviolet light conferred by overexpression of a novel human 26 S proteasome subunit,” Journal of Biological Chemistry, vol. 272, no. 48, pp. 30470–30475, 1997. View at Publisher · View at Google Scholar · View at Scopus
  140. L.-Y. Tang, N. Deng, L.-S. Wang et al., “Quantitative phosphoproteome profiling of Wnt3a-mediated signaling network: indicating the involvement of ribonucleoside-diphosphate reductase M2 subunit phosphorylation at residue serine 20 in canonical Wnt signal transduction,” Molecular and Cellular Proteomics, vol. 6, no. 11, pp. 1952–1967, 2007. View at Publisher · View at Google Scholar · View at Scopus
  141. L. C. Burrage, T. N. Eble, P. M. Hixson, E. K. Roney, S. W. Cheung, and L. M. Franco, “A mosaic 2q24.2 deletion narrows the critical region to a 0.4 Mb interval that includes TBR1, TANK, and PSMD14,” American Journal of Medical Genetics Part A, vol. 161, pp. 841–844, 2013. View at Google Scholar
  142. M. Mishto, E. Bellavista, C. Ligorio et al., “Immunoproteasome LMP2 60HH variant alters MBP epitope generation and reduces the risk to develop multiple sclerosis in Italian female population,” PLoS ONE, vol. 5, no. 2, Article ID e9287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  143. Z. Paz and G. C. Tsokos, “New therapeutics in systemic lupus erythematosus,” Current Opinion in Rheumatology, vol. 25, pp. 297–303, 2013. View at Google Scholar
  144. A. Fierabracci, “Proteasome inhibitors: a new perspective for treating autoimmune diseases,” Current Drug Targets, vol. 13, pp. 1665–1675, 2012. View at Google Scholar
  145. D. Nijhawan, T. I. Zack, Y. Ren et al., “Cancer vulnerabilities unveiled by genomic loss,” Cell, vol. 150, pp. 842–854, 2012. View at Google Scholar
  146. D. Zangen, Y. Kaufman, S. Zeligson et al., “XX ovarian dysgenesis is caused by a PSMC3IP/HOP2 mutation that abolishes coactivation of estrogen-driven transcription,” American Journal of Human Genetics, vol. 89, no. 4, pp. 572–579, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. R. Enomoto, T. Kinebuchi, M. Sato, H. Yagi, H. Kurumizaka, and S. Yokoyama, “Stimulation of DNA strand exchange by the human TBPIP/Hop2-Mnd1 complex,” Journal of Biological Chemistry, vol. 281, no. 9, pp. 5575–5581, 2006. View at Publisher · View at Google Scholar · View at Scopus
  148. H. Ijichi, T. Tanaka, T. Nakamura, H. Yagi, A. Hakuba, and M. Sato, “Molecular cloning and characterization of a human homologue of TBPIP, a BRCA1 locus-related gene,” Gene, vol. 248, no. 1-2, pp. 99–107, 2000. View at Publisher · View at Google Scholar · View at Scopus
  149. J. Dahlqvist, J. Klar, N. Tiwari et al., “A single-nucleotide deletion in the POMP 5′ UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis,” American Journal of Human Genetics, vol. 86, no. 4, pp. 596–603, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. B. Fricke, S. Heink, J. Steffen, P.-M. Kloetzel, and E. Krüger, “The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum,” EMBO Reports, vol. 8, no. 12, pp. 1170–1175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  151. J. B. Mailhes, C. Hilliard, M. Lowery, and S. N. London, “MG-132, an inhibitor of proteasomes and calpains, induced inhibition of oocyte maturation and aneuploidy in mouse oocytes,” Cell and Chromosome, vol. 1, article 2, 2002. View at Publisher · View at Google Scholar · View at Scopus
  152. K. E. Longva, F. D. Blystad, E. Stang, A. M. Larsen, L. E. Johannessen, and I. H. Madshus, “Ubiquitination and proteasomal activity is required for transport of the EGF receptor to inner membranes of multivesicular bodies,” Journal of Cell Biology, vol. 156, no. 5, pp. 843–854, 2002. View at Publisher · View at Google Scholar · View at Scopus
  153. H. Ostrowska, C. Wojcik, S. Omura, and K. Worowski, “Lactacystin, a specific inhibitor of the proteasome, inhibits human platelet lysosomal cathepsin A-like enzyme,” Biochemical and Biophysical Research Communications, vol. 234, no. 3, pp. 729–732, 1997. View at Publisher · View at Google Scholar · View at Scopus
  154. L. Guery, N. Benikhlef, T. Gautier et al., “Fine-tuning nucleophosmin in macrophage differentiation and activation,” Blood, vol. 118, no. 17, pp. 4694–4704, 2011. View at Publisher · View at Google Scholar · View at Scopus
  155. A. V. Gomes, G. W. Young, Y. Wang et al., “Contrasting proteome biology and functional heterogeneity of the 20 S proteasome complexes in mammalian tissues,” Molecular and Cellular Proteomics, vol. 8, no. 2, pp. 302–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  156. Z. Cui, J. E. Gilda, and A. V. Gomes, “Crude and purified proteasome activity assays are affected by type of microplate,” Analytical Biochemistry, 2013. View at Publisher · View at Google Scholar
  157. A. V. Gomes, D. S. Waddell, R. Siu et al., “Upregulation of proteasome activity in muscle RING finger 1-null mice following denervation,” The FASEB Journal, vol. 26, pp. 2986–2999, 2012. View at Google Scholar
  158. A. Iorga, S. Dewey, R. Partow-Navid, A. V. Gomes, and M. Eghbali, “Pregnancy is associated with decreased cardiac proteasome activity and oxidative stress in mice,” PLoS ONE, vol. 7, Article ID e48601, 2012. View at Google Scholar
  159. S. Nickels, T. Truong, R. Hein et al., “Evidence of gene-environment interactions between common breast cancer susceptibility loci and established environmental risk factors,” PLoS Genetics, vol. 9, Article ID e1003284, 2013. View at Google Scholar
  160. Z. Cui, S. B. Scruggs, G. E. Gilda, P. Ping, and A. V. Gomes, “Regulation of cardiac proteasomes by ubiquitination, sumoylation, and beyond,” Journal of Molecular and Cellular Cardiology, 2013. View at Publisher · View at Google Scholar
  161. A. V. Gomes, C. Zong, R. D. Edmondson et al., “Mapping the murine cardiac 26S proteasome complexes,” Circulation Research, vol. 99, no. 4, pp. 362–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  162. C. Zong, A. V. Gomes, O. Drews et al., “Regulation of murine cardiac 20S proteasomes: role of associating partners,” Circulation Research, vol. 99, no. 4, pp. 372–380, 2006. View at Publisher · View at Google Scholar · View at Scopus
  163. A. Salas and Á. Carracedo, “Studies of association in complex diseases: statistical problems related to the analysis of genetic polymorphisms,” Revista Clinica Espanola, vol. 207, no. 11, pp. 563–565, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. C. M. Lewis and J. Knight, “Introduction to genetic association studies,” Cold Spring Harbor Protocols, vol. 7, no. 3, pp. 297–306, 2012. View at Publisher · View at Google Scholar · View at Scopus
  165. H. H.-J. Schmidt, “Introducing single-nucleotide polymorphism markers in the diagnosis of Wilson disease,” Clinical Chemistry, vol. 53, no. 9, pp. 1568–1569, 2007. View at Publisher · View at Google Scholar · View at Scopus