Table of Contents Author Guidelines Submit a Manuscript
Stroke Research and Treatment
Volume 2011, Article ID 809874, 9 pages
http://dx.doi.org/10.4061/2011/809874
Review Article

Molecular Mechanisms Underlying Hypothermia-Induced Neuroprotection

Pharmacology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 2-17-85, Jusohonmachi, Yodogawa-ku, Osaka 532-8686, Japan

Received 26 August 2010; Accepted 12 October 2010

Academic Editor: Hyung Soo Han

Copyright © 2011 Yasushi Shintani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. A. Donnan, M. Fisher, M. Macleod, and S. M. Davis, “Stroke,” The Lancet, vol. 371, no. 9624, pp. 1612–1623, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  2. C. P. Warlow, “Epidemiology of stroke,” The Lancet, vol. 352, no. 3, pp. 1–4, 1998. View at Google Scholar · View at Scopus
  3. V. L. Feigin, C. M. M. Lawes, D. A. Bennett, and C. S. Anderson, “Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century,” Lancet Neurology, vol. 2, no. 1, pp. 43–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. C. S. Kidwell, D. S. Liebeskind, S. Starkman, and J. L. Saver, “Trends in acute ischemic stroke trials through the 20th century,” Stroke, vol. 32, no. 6, pp. 1349–1359, 2001. View at Google Scholar · View at Scopus
  5. A. R. Green, T. Odergren, and T. Ashwood, “Animal models of stroke: do they have value for discovering neuroprotective agents?” Trends in Pharmacological Sciences, vol. 24, no. 8, pp. 402–408, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Yoshida, H. Yanai, Y. Namiki, K. Fukatsu-Sasaki, N. Furutani, and N. Tada, “Neuroprotective effects of edaravone: a novel free radical scavenger in cerebrovascular injury,” CNS Drug Reviews, vol. 12, no. 1, pp. 9–20, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. A. Yenari, J. E. Lee, and R. G. Giffard, “Stress proteins and ischemic tolerance,” in Cerebral Ischemic Tolerence, B. Schaller, Ed., pp. 103–121, Nova Science Publishers, Huntington, NY, USA, 2004. View at Google Scholar
  8. Z. Zheng, J. E. Lee, and M. A. Yenari, “Stroke: molecular mechanisms and potential targets for treatment,” Current Molecular Medicine, vol. 3, no. 4, pp. 361–372, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Miyazawa, A. Tamura, S. Fukui, and K.-A. Hossmann, “Effect of mild hypothermia on focal cerebral ischemia. Review of experimental studies,” Neurological Research, vol. 25, no. 5, pp. 457–464, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Yanamoto, I. Nagata, Y. Niitsu et al., “Prolonged mild hypothermia therapy protects the brain against permanent focal ischemia,” Stroke, vol. 32, no. 1, pp. 232–239, 2001. View at Google Scholar · View at Scopus
  11. N. Kawai, M. Okauchi, K. Morisaki, and S. Nagao, “Effects of delayed intraischemic and postischemic hypothermia on a focal model of transient cerebral ischemia in rats,” Stroke, vol. 31, no. 8, pp. 1982–1989, 2000. View at Google Scholar · View at Scopus
  12. M. Holzer, F. Sterz, J. M. Darby et al., “Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest,” The New England Journal of Medicine, vol. 346, no. 8, pp. 549–556, 2002. View at Publisher · View at Google Scholar · View at PubMed
  13. S. A. Bernard, T. W. Gray, M. D. Buist et al., “Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia,” The New England Journal of Medicine, vol. 346, no. 8, pp. 557–563, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. H. Y. Kil, J. Zhang, and C. A. Piantadosi, “Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 1, pp. 100–106, 1996. View at Google Scholar · View at Scopus
  15. H. S. Han, M. Karabiyikoglu, S. Kelly, R. A. Sobel, and M. A. Yenari, “Mild hypothermia inhibits nuclear factor-κB translocation in experimental stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 5, pp. 589–598, 2003. View at Google Scholar · View at Scopus
  16. G. J. Wang, H. Y. Deng, C. M. Maier, G. H. Sun, and M. A. Yenari, “Mild hypothermia reduces ICAM-1 expression, neutrophil infiltration and microglia/monocyte accumulation following experimental stroke,” Neuroscience, vol. 114, no. 4, pp. 1081–1090, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. M. A. Yenari, S. Iwayama, D. Cheng et al., “Mild hypothermia attenuates cytochrome c release but does not alter Bcl-2 expression or caspase activation after experimental stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 22, no. 1, pp. 29–38, 2002. View at Google Scholar · View at Scopus
  18. P. P. Drury, L. Bennet, and A. J. Gunn, “Mechanisms of hypothermic neuroprotection,” Seminars in Fetal and Neonatal Medicine, vol. 15, no. 5, pp. 287–292, 2010. View at Publisher · View at Google Scholar · View at PubMed
  19. H. Ohta, Y. Terao, Y. Shintani, and Y. Kiyota, “Therapeutic time window of post-ischemic mild hypothermia and the gene expression associated with the neuroprotection in rat focal cerebral ischemia,” Neuroscience Research, vol. 57, no. 3, pp. 424–433, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. F. Colbourne, G. R. Sutherland, and R. N. Auer, “An automated system for regulating brain temperature in awake and freely moving rodents,” Journal of Neuroscience Methods, vol. 67, no. 2, pp. 185–190, 1996. View at Publisher · View at Google Scholar · View at Scopus
  21. S. DeBow and F. Colbourne, “Brain temperature measurement and regulation in awake and freely moving rodents,” Methods, vol. 30, no. 2, pp. 167–171, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Colbourne, G. Sutherland, and D. Corbett, “Postischemic hypothermia: a critical appraisal with implications for clinical treatment,” Molecular Neurobiology, vol. 14, no. 3, pp. 171–201, 1997. View at Google Scholar · View at Scopus
  23. G. Z. Markarian, J. H. Lee, D. J. Stein, and S.-C. Hong, “Mild hypothermia: therapeutic window after experimental cerebral ischemia,” Neurosurgery, vol. 38, no. 3, pp. 542–551, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. C. M. Maier, K. V. B. Ahern, M. L. Cheng, J. E. Lee, M. A. Yenari, and G. K. Steinberg, “Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia: effects on neurologic outcome, infarct size, apoptosis, and inflammation,” Stroke, vol. 29, no. 10, pp. 2171–2180, 1998. View at Google Scholar · View at Scopus
  25. F. Colbourne, D. Corbett, Z. Zhao, J. Yang, and A. M. Buchan, “Prolonged but delayed postischemic hypothermia: a long-term outcome study in the rat middle cerebral artery occlusion model,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 12, pp. 1702–1708, 2000. View at Google Scholar · View at Scopus
  26. D. Corbett, M. Hamilton, and F. Colbourne, “Persistent neuroprotection with prolonged postischemic hypothermia in adult rats subjected to transient middle cerebral artery occlusion,” Experimental Neurology, vol. 163, no. 1, pp. 200–206, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. A. Schulze and J. Downward, “Navigating gene expression using microarrays—a technology review,” Nature Cell Biology, vol. 3, no. 8, pp. E190–E195, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. J. C. Mills, K. A. Roth, R. L. Cagan, and J. I. Gordon, “DNA microarrays and beyond: completing the journey from tissue to cell,” Nature Cell Biology, vol. 3, no. 8, pp. E175–E178, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. K. Mirnics, F. A. Middleton, D. A. Lewis, and P. Levitt, “Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse,” Trends in Neurosciences, vol. 24, no. 8, pp. 479–486, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. P. T. Akins, P. K. Liu, and C. Y. Hsu, “Immediate early gene expression in response to cerebral ischemia: friend or foe?” Stroke, vol. 27, no. 9, pp. 1682–1687, 1996. View at Google Scholar · View at Scopus
  31. J. Koistinaho and T. Hökfelt, “Altered gene expression in brain ischemia,” NeuroReport, vol. 8, no. 2, pp. R1–R8, 1997. View at Google Scholar · View at Scopus
  32. F. R. Sharp, A. Lu, Y. Tang, and D. E. Millhorn, “Multiple molecular penumbras after focal cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 20, no. 7, pp. 1011–1032, 2000. View at Google Scholar · View at Scopus
  33. S. J. Read, A. A. Parsons, D. C. Harrison et al., “Stroke genomics: approaches to identify, validate, and understand ischemic stroke gene expression,” Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 7, pp. 755–778, 2001. View at Google Scholar · View at Scopus
  34. A. Lu, Y. Tang, R. Ran, J. F. Clark, B. J. Aronow, and F. R. Sharp, “Genomics of the periinfarction cortex after focal cerebral ischemia,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 7, pp. 786–810, 2003. View at Google Scholar · View at Scopus
  35. N. Kawahara, Y. Wang, A. Mukasa et al., “Genome-wide gene expression analysis for induced ischemic tolerance and delayed neuronal death following transient global ischemia in rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 24, no. 2, pp. 212–223, 2004. View at Google Scholar · View at Scopus
  36. X.-C. M. Lu, A. J. Williams, C. Yao et al., “Microarray analysis of acute and delayed gene expression profile in rats after focal ischemic brain injury and reperfusion,” Journal of Neuroscience Research, vol. 77, no. 6, pp. 843–857, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. D. T. Denhardt, M. Noda, A. W. O'Regan, D. Pavlin, and J. S. Berman, “Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival,” The Journal of Clinical Investigation, vol. 107, no. 9, pp. 1055–1061, 2001. View at Google Scholar · View at Scopus
  38. X. Wang, C. Louden, T.-L. Yue et al., “Delayed expression of osteopontin after focal stroke in the rat,” Journal of Neuroscience, vol. 18, no. 6, pp. 2075–2083, 1998. View at Google Scholar · View at Scopus
  39. J. A. Ellison, F. C. Barone, and G. Z. Feuerstein, “Matrix remodeling after stroke. De novo expression of matrix proteins and integrin receptors,” Annals of the New York Academy of Sciences, vol. 890, pp. 204–222, 1999. View at Google Scholar · View at Scopus
  40. J. A. Ellison, J. J. Velier, P. Spera et al., “Osteopontin and its integrin receptor α(v)β3 are upregulated during formation of the glial scar after focal stroke,” Stroke, vol. 29, no. 8, pp. 1698–1707, 1998. View at Google Scholar · View at Scopus
  41. R. Meller, S. L. Stevens, M. Minami et al., “Neuroprotection by osteopontin in stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 25, no. 2, pp. 217–225, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. A. Chen, W. P. Liao, Q. Lu, W. S.F. Wong, and P. T.-H. Wong, “Upregulation of dihydropyrimidinase-related protein 2, spectrin α II chain, heat shock cognate protein 70 pseudogene 1 and tropomodulin 2 after focal cerebral ischemia in rats-A proteomics approach,” Neurochemistry International, vol. 50, no. 7-8, pp. 1078–1086, 2007. View at Publisher · View at Google Scholar · View at PubMed
  43. S.-F. Yan, T. Fujita, J. Lu et al., “Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress,” Nature Medicine, vol. 6, no. 12, pp. 1355–1361, 2000. View at Publisher · View at Google Scholar · View at PubMed
  44. H. Deng, H. S. Han, D. Cheng, G. H. Sun, and M. A. Yenari, “Mild hypothermia inhibits inflammation after experimental stroke and brain inflammation,” Stroke, vol. 34, no. 10, pp. 2495–2501, 2003. View at Publisher · View at Google Scholar · View at PubMed
  45. J. Szaflarski, D. Burtrum, F. S. Silverstein, and S. Finkelstein, “Cerebral hypoxia-ischemia stimulates cytokine gene expression in perinatal rats,” Stroke, vol. 26, no. 6, pp. 1093–1100, 1995. View at Google Scholar
  46. M. A. Yenari and H. S. Han, “Influence of hypothermia on post-ischemic inflammation: role of nuclear factor kappa B (NFκB),” Neurochemistry International, vol. 49, no. 2, pp. 164–169, 2006. View at Publisher · View at Google Scholar · View at PubMed
  47. M. Karabiyikoglu, H. S. Han, M. A. Yenari, and G. K. Steinberg, “Attenuation of nitric oxide synthase isoform expression by mild hypothermia after focal cerebral ischemia: variations depending on timing of cooling,” Journal of Neurosurgery, vol. 98, no. 6, pp. 1271–1276, 2003. View at Google Scholar
  48. C. G. Zimmermann-Ivol, P. R. Burkhard, J. Le Floch-Rohr, L. Allard, D. F. Hochstrasser, and J.-C. Sanchez, “Fatty acid binding protein as a serum marker for the early diagnosis of stroke: a pilot study,” Molecular and Cellular Proteomics, vol. 3, no. 1, pp. 66–72, 2004. View at Publisher · View at Google Scholar · View at PubMed
  49. L. Sironi, U. Guerrini, E. Tremoli et al., “Analysis of pathological events at the onset of brain damage in stroke-prone rats: a proteomics and magnetic resonance imaging approach,” Journal of Neuroscience Research, vol. 78, no. 1, pp. 115–122, 2004. View at Publisher · View at Google Scholar · View at PubMed
  50. Y. Terao, S. Miyamoto, K. Hirai et al., “Hypothermia enhances heat-shock protein 70 production in ischemic brains,” NeuroReport, vol. 20, no. 8, pp. 745–749, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. C. Garrido, S. Gurbuxani, L. Ravagnan, and G. Kroemer, “Heat shock proteins: endogenous modulators of apoptotic cell death,” Biochemical and Biophysical Research Communications, vol. 286, no. 3, pp. 433–442, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. R. G. Giffard, L. Xu, H. Zhao et al., “Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury,” Journal of Experimental Biology, vol. 207, no. 18, pp. 3213–3220, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. M. A. Yenari, J. Liu, Z. Zheng, Z. S. Vexler, J. E. Lee, and R. G. Giffard, “Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection,” Annals of the New York Academy of Sciences, vol. 1053, pp. 74–83, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. M. T. Schell, A. L. Spitzer, J. A. Johnson, D. Lee, and H. W. Harris, “Heat shock inhibits NF-kB activation in a dose- and time-dependent manner,” Journal of Surgical Research, vol. 129, no. 1, pp. 90–93, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. Z. Zheng, J. Y. Kim, H. Ma, J. E. Lee, and M. A. Yenari, “Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 1, pp. 53–63, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. K. Vass, W. J. Welch, and T. S. Nowak Jr., “Localization of 70-kDa stress protein induction in gerbil brain after ischemia,” Acta Neuropathologica, vol. 77, no. 2, pp. 128–135, 1988. View at Google Scholar · View at Scopus
  57. R. W. Currie, J. A. Ellison, R. F. White, G. Z. Feuerstein, X. Wang, and F. C. Barone, “Benign focal ischemic preconditioning induces neuronal Hsp70 and prolonged astrogliosis with expression of Hsp27,” Brain Research, vol. 863, no. 1-2, pp. 169–181, 2000. View at Publisher · View at Google Scholar · View at Scopus
  58. K. Kato, R. Katoh-Semba, I. K. Takeuchi, H. Ito, and K. Kamei, “Responses of heat shock proteins hsp27, αB-crystallin, and hsp70 in rat brain after kainic acid-induced seizure activity,” Journal of Neurochemistry, vol. 73, no. 1, pp. 229–236, 1999. View at Publisher · View at Google Scholar · View at Scopus
  59. T. S. Nowak Jr., U. Bond, and M. J. Schlesinger, “Heat shock RNA levels in brain and other tissues after hyperthermia and transient ischemia,” Journal of Neurochemistry, vol. 54, no. 2, pp. 451–458, 1990. View at Publisher · View at Google Scholar · View at Scopus
  60. M. Ren, Y. Leng, M. Jeong, P. R. Leeds, and D.-M. Chuang, “Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction,” Journal of Neurochemistry, vol. 89, no. 6, pp. 1358–1367, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. Y. Matsumori, F. J. Northington, S. M. Hong et al., “Reduction of caspase-8 and -9 cleavage is associated with increased c-FLIP and increased binding of Apaf-1 and Hsp70 after neonatal hypoxic/ischemic injury in mice overexpressing Hsp70,” Stroke, vol. 37, no. 2, pp. 507–512, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. S. Hagiwara, H. Iwasaka, S. Matsumoto, and T. Noguchi, “Changes in cell culture temperature alter release of inflammatory mediators in murine macrophagic RAW264.7 cells,” Inflammation Research, vol. 56, no. 7, pp. 297–303, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. M. P. Rubtsova, D. V. Sizova, S. E. Dmitriev, D. S. Ivanov, V. S. Prassolov, and I. N. Shatsky, “Distinctive properties of the 5′-untranslated region of human Hsp70 mRNA,” The Journal of Biological Chemistry, vol. 278, no. 25, pp. 22350–22356, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. Z. Zheng and M. A. Yenari, “Post-ischemic inflammation: molecular mechanisms and therapeutic implications,” Neurological Research, vol. 26, no. 8, pp. 884–892, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Furuichi, T. Noto, J.-Y. Li et al., “Multiple modes of action of tacrolimus (FK506) for neuroprotective action on ischemic damage after transient focal cerebral ischemia in rats,” Brain Research, vol. 1014, no. 1-2, pp. 120–130, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. Y. Matsuo, H. Onodera, Y. Shiga et al., “Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat,” Brain Research, vol. 656, no. 2, pp. 344–352, 1994. View at Publisher · View at Google Scholar · View at Scopus
  67. O. B. Dimitrijevic, S. M. Stamatovic, R. F. Keep, and A. V. Andjelkovic, “Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury,” Journal of Cerebral Blood Flow and Metabolism, vol. 26, no. 6, pp. 797–810, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. O. B. Dimitrijevic, S. M. Stamatovic, R. F. Keep, and A. V. Andjelkovic, “Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice,” Stroke, vol. 38, no. 4, pp. 1345–1353, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. Y. Terao, H. Ohta, A. Oda, Y. Nakagaito, Y. Kiyota, and Y. Shintani, “Macrophage inflammatory protein-3alpha plays a key role in the inflammatory cascade in rat focal cerebral ischemia,” Neuroscience Research, vol. 64, no. 1, pp. 75–82, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. A.-S. Charbonnier, N. Kohrgruber, E. Kriehuber, G. Stingl, A. Rot, and D. Maurer, “Macrophage inflammatory protein 3α is involved in the constitutive trafficking of epidermal langerhans cells,” Journal of Experimental Medicine, vol. 190, no. 12, pp. 1755–1767, 1999. View at Publisher · View at Google Scholar · View at Scopus
  71. D. N. Cook, D. M. Prosser, R. Forster et al., “CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue,” Immunity, vol. 12, no. 5, pp. 495–503, 2000. View at Google Scholar · View at Scopus
  72. B. Serafini, S. Columba-Cabezas, F. Di Rosa, and F. Aloisi, “Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis,” American Journal of Pathology, vol. 157, no. 6, pp. 1991–2002, 2000. View at Google Scholar · View at Scopus
  73. U. Utans-Schneitz, H. Lorez, W. E.F. Klinkert, J. Da Silva, and W. Lesslauer, “A novel rat CC chemokine, identified by targeted differential display, is upregulated in brain inflammation,” Journal of Neuroimmunology, vol. 92, no. 1-2, pp. 179–190, 1998. View at Publisher · View at Google Scholar
  74. J. M. Pérez-Cañadillas, A. Zaballos, J. Gutiérrez et al., “NMR solution structure of murine CCL20/MIP-3α, a chemokine that specifically chemoattracts immature dendritic cells and lymphocytes through Its highly specific interaction with the β-chemokine receptor CCR6,” The Journal of Biological Chemistry, vol. 276, no. 30, pp. 28372–28379, 2001. View at Publisher · View at Google Scholar · View at PubMed
  75. E. Schutyser, S. Struyf, and J. Van Damme, “The CC chemokine CCL20 and its receptor CCR6,” Cytokine and Growth Factor Reviews, vol. 14, no. 5, pp. 409–426, 2003. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Zoli, R. Grimaldi, R. Ferrari, I. Zini, and L. F. Agnati, “Short- and long-term changes in striatal neurons and astroglia after transient forebrain ischemia in rats,” Stroke, vol. 28, no. 5, pp. 1049–1059, 1997. View at Google Scholar · View at Scopus
  77. E. Ambrosini, S. Columba-Cabezas, B. Serafini, A. Muscella, and F. Aloisi, “Astrocytes are the major intracerebral source of macrophage inflammatory protein-3α/CCL20 in relapsing experimental autoimmune encephalomyelitis and in vitro,” GLIA, vol. 41, no. 3, pp. 290–300, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. P. L. Wood, “Microglia as a unique cellular target in the treatment of stroke: potential neurotoxic mediators produced by activated microglia,” Neurological Research, vol. 17, no. 4, pp. 242–248, 1995. View at Google Scholar · View at Scopus
  79. A. H. De Haas, H. R. J. Van Weering, E. K. De Jong, H. W. G. M. Boddeke, and K. P. H. Biber, “Neuronal chemokines: versatile messengers in central nervous system cell interaction,” Molecular Neurobiology, vol. 36, no. 2, pp. 137–151, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. W. Rostène, P. Kitabgi, and S. M. Parsadaniantz, “Chemokines: a new class of neuromodulator?” Nature Reviews Neuroscience, vol. 8, no. 11, pp. 895–904, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. P. H. Chan, “Reactive oxygen radicals in signaling and damage in the ischemic brain,” Journal of Cerebral Blood Flow and Metabolism, vol. 21, no. 1, pp. 2–14, 2001. View at Google Scholar · View at Scopus
  82. H. Y. Kil, J. Zhang, and C. A. Piantadosi, “Brain temperature alters hydroxyl radical production during cerebral ischemia/reperfusion in rats,” Journal of Cerebral Blood Flow and Metabolism, vol. 16, no. 1, pp. 100–106, 1996. View at Google Scholar · View at Scopus
  83. L. Liu, J. Y. Kim, M. A. Koike et al., “FasL shedding is reduced by hypothermia in experimental stroke,” Journal of Neurochemistry, vol. 106, no. 2, pp. 541–550, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. E. L. Jong, J. Y. Yone, M. E. Moseley, and M. A. Yenari, “Reduction in levels of matrix metalloproteinases and increased expression of tissue inhibitor of metalloproteinase-2 in response to mild hypothermia therapy in experimental stroke,” Journal of Neurosurgery, vol. 103, no. 2, pp. 289–297, 2005. View at Google Scholar · View at Scopus