Table of Contents Author Guidelines Submit a Manuscript
Stroke Research and Treatment
Volume 2012, Article ID 348631, 7 pages
http://dx.doi.org/10.1155/2012/348631
Research Article

Rehabilitation of the Upper Extremity after Stroke: A Case Series Evaluating REO Therapy and an Auditory Sensor Feedback for Trunk Control

1Department of Physical Therapy, University of the Sciences, Philadelphia, PA 19104-4495, USA
2Department of Occupational Therapy, Magee Rehabilitation Hospital, Philadelphia, PA 19106, USA

Received 13 April 2012; Revised 11 June 2012; Accepted 17 June 2012

Academic Editor: Marco Iosa

Copyright © 2012 G. Thielman and P. Bonsall. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Tennant, J. M. L. Geddes, J. Fear, M. Hillman, and M. A. Chamberlain, “Outcome following stroke,” Disability and Rehabilitation, vol. 19, no. 7, pp. 278–284, 1997. View at Google Scholar · View at Scopus
  2. S. J. Page, G. D. Fulk, and P. Boyne, “Clinically important differences for the Upper-extremity fugl-meyer scale in people with minimal to moderate impairment due to chronic stroke,” Physical Therapy, vol. 92, no. 6, pp. 791–798, 2012. View at Publisher · View at Google Scholar
  3. G. Kwakkel, B. J. Kollen, and H. I. Krebs, “Effects of robot-assisted therapy on Upper limb recovery after stroke: a systematic review,” Neurorehabilitation and Neural Repair, vol. 22, no. 2, pp. 111–121, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Mehrholz, T. Platz, J. Kugler, and M. Pohl, “Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke,” Stroke, vol. 40, no. 5, pp. e392–e393, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Masiero, A. Celia, G. Rosati, and M. Armani, “Robotic-assisted rehabilitation of the Upper limb after acute stroke,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 2, pp. 142–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Morone, M. Iosa, M. Bragoni et al., “Who may have durable benefit from robotic gait training? A 2 year follow up randomized controlled trial in patients with subacute stroke,” Stroke, vol. 43, no. 4, pp. 1140–1142, 2012. View at Publisher · View at Google Scholar
  7. L. R. MacClellan, D. D. Bradham, J. Whitall et al., “Robotic Upper-limb neurorehabilitation in chronic stroke patients,” Journal of Rehabilitation Research & Development, vol. 42, no. 6, pp. 717–722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. A. C. Lo, P. D. Guarino, L. G. Richards et al., “Robot-assisted therapy for long-term Upper-limb impairment after stroke,” The New England Journal of Medicine, vol. 362, no. 19, pp. 1772–1783, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Bovolenta, M. Goldoni, P. Clerici, M. Agosti, and M. Franceschini, “Robot therapy for functional recovery of the Upper limbs: a pilot study on patients after stroke,” Journal of Rehabilitation Medicine, vol. 41, no. 12, pp. 971–975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Treger, S. Faran, and H. Ring, “Robot-assisted therapy for neuromuscular training of sub-acute stroke patients. A feasibility study,” European Journal of Physical and Rehabilitation Medicine, vol. 44, no. 4, pp. 431–435, 2008. View at Google Scholar · View at Scopus
  11. S. K. Subramanian, C. L. Massie, M. P. Malcolm, and M. F. Levin, “Does provision of extrinsic feedback result in improved motor learning in the Upper limb poststroke? A systematic review of the evidence,” Neurorehabilitation and Neural Repair, vol. 24, no. 2, pp. 113–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Casadio, P. Giannoni, P. Morasso, and V. Sanguineti, “A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients,” Clinical Rehabilitation, vol. 23, no. 3, pp. 217–228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. P. Lam, D. Hebert, J. Boger et al., “A haptic-robotic platform for Upper-limb reaching stroke therapy: preliminary design and evaluation results,” Journal of NeuroEngineering and Rehabilitation, vol. 5, article 15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Kwakkel, B. Kollen, and E. Lindeman, “Understanding the pattern of functional recovery after stroke: facts and theories,” Restorative Neurology and Neuroscience, vol. 22, no. 3-4, pp. 281–299, 2004. View at Google Scholar · View at Scopus
  15. G. Thielman, T. Kaminski, and A. M. Gentile, “Rehabilitation of reaching after stroke: comparing 2 training protocols utilizing trunk restraint,” Neurorehabilitation and Neural Repair, vol. 22, no. 6, pp. 697–705, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. G. Thielman, “Rehabilitation of reaching poststroke: a randomized pilot investigation of two types of trunk control,” Journal of Neurologic Physical Therapy, vol. 34, no. 3, pp. 138–144, 2010. View at Google Scholar
  17. G. T. Thielman, C. M. Dean, and A. M. Gentile, “Rehabilitation of reaching after stroke: task-related training versus progressive resistive exercise,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 10, pp. 1613–1618, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Michaelsen, R. Dannenbaum, and M. F. Levin, “Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial,” Stroke, vol. 37, no. 1, pp. 186–192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. H. Carr, R. B. Shepherd, L. Nordholm, and D. Lynne, “Investigation of a new motor assessment scale for stroke patients,” Physical Therapy, vol. 65, no. 2, pp. 175–180, 1985. View at Google Scholar · View at Scopus
  20. D. J. Gladstone, C. J. Danells, and S. E. Black, “The fugl-meyer assessment of motor recovery after stroke: a critical review of its measurement properties,” Neurorehabilitation and Neural Repair, vol. 16, no. 3, pp. 232–240, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. S. M. Michaelsen, S. Jacobs, A. Roby-Brami, and M. F. Levin, “Compensation for distal impairments of grasping in adults with hemiparesis,” Experimental Brain Research, vol. 157, no. 2, pp. 162–173, 2004. View at Google Scholar · View at Scopus
  22. International Classification of Function in Disability and Health: ICF, World Health Organization, Geneva, Switzerland, 2001.
  23. C. Norkin and D. White, Measurement of Joint Motion: A Guide To Goniometry, F. A. Davis Company, Philadelphia, Pa, USA, 1995.
  24. J. E. Harris and J. J. Eng, “Paretic Upper-limb strength best explains arm activity in people with stroke,” Physical Therapy, vol. 87, no. 1, pp. 88–97, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. L. Wolf, P. A. Catlin, M. Ellis, A. L. Archer, B. Morgan, and A. Piacentino, “Assessing Wolf motor function test as outcome measure for research in patients after stroke,” Stroke, vol. 32, no. 7, pp. 1635–1639, 2001. View at Google Scholar · View at Scopus
  26. S. W. Park, S. L. Wolf, S. Blanton, C. Winstein, and D. S. Nichols-Larsen, “The EXCITE trial: predicting a clinically meaningful motor activity log outcome,” Neurorehabilitation and Neural Repair, vol. 22, no. 5, pp. 486–493, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Özdemir, M. Birtane, R. Tabatabaei, G. Ekuklu, and S. Kokino, “Cognitive evaluation and functional outcome after stroke,” American Journal of Physical Medicine & Rehabilitation, vol. 80, no. 6, pp. 410–415, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Schmidt and D. L. Lee, Motor Control and Learning: A Behavioral Emphasis, Human Kinetics Books, Champaign, Ill, USA, 2005.
  29. A. J. Vickers and D. G. Altman, “Analysing controlled trials with baseline and follow up measurements,” BMJ, vol. 323, no. 7321, pp. 1123–1124, 2001. View at Google Scholar · View at Scopus
  30. C. E. Lang, D. F. Edwards, R. L. Birkenmeier, and A. W. Dromerick, “Estimating minimal clinically important differences of Upper-extremity measures early after stroke,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 9, pp. 1693–1700, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Sivan, R. J. O'Connor, S. Makower, M. Levesley, and B. Bhakta, “Systematic review of outcome measures used in the evaluation of robot-assisted Upper limb exercise in stroke,” Journal of Rehabilitation Medicine, vol. 43, no. 3, pp. 181–189, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. S. M. Michaelsen and M. F. Levin, “Short-term effects of practice with trunk restraint on reaching movements in patients with chronic stroke,” Stroke, vol. 35, no. 8, pp. 1914–1919, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. S. M. Michaelsen, R. Dannenbaum, and M. F. Levin, “Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial,” Stroke, vol. 37, no. 1, pp. 186–192, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. N. G. Kutner, R. Zhang, A. J. Butler, S. L. Wolf, and J. L. Alberts, “Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial,” Physical Therapy, vol. 90, no. 4, pp. 493–504, 2010. View at Publisher · View at Google Scholar · View at Scopus