Table of Contents Author Guidelines Submit a Manuscript
Science and Technology of Nuclear Installations
Volume 2012 (2012), Article ID 351985, 9 pages
Research Article

Development of a Secondary SCRAM System for Fast Reactors and ADS Systems

1Institute for Advanced Nuclear Systems, SCK.CEN, 200 Boeretang, 2400 Mol, Belgium
2Laboratory for Agricultural Machinery and Processing, Katholieke Universiteit Leuven, 30 Kasteelpark Arenberg, 3001 Heverlee, Belgium
3Institute of Mechanics, Materials and Civil Engineering, Catholic University of Leuven, 2 Place du Levant, 1348 Louvain-la-Neuve, Belgium

Received 15 November 2011; Accepted 14 February 2012

Academic Editor: Alberto Talamo

Copyright © 2012 Simon Vanmaercke et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. K. Paschall and A. S. Jackola, “Hydraulically supported absorber balls iss (inherent shutdown system)—water loop testing, absorber column,” Tech. Rep., Rockwell International, 1976. View at Google Scholar
  2. E. R. Specht, R. K. Paschall, M. Marquette, and A. Jackola, “Hydraulically supported absorber balls shutdown system for inherently safe lmfbr's,” in Proceedings of the International Meeting on Fast Reacctor Safety and Related Physics, vol. 3, p. 683, 1976.
  3. M. Kambe, H. Tsunoda, K. Mishima, and T. Iwamura, “RAPID-L operator-free fast reactor concept without any control rods,” Nuclear Technology, vol. 143, no. 1, pp. 11–21, 2003. View at Google Scholar · View at Scopus
  4. M. Kambe and M. Uotani, “Design and development of fast breeder reactor passive reactivity control systems: LEM and LIM,” Nuclear Technology, vol. 122, no. 2, pp. 179–195, 1998. View at Google Scholar · View at Scopus
  5. E. L. Gluekler, “U.S. Advanced liquid metal reactor (ALMR),” Progress in Nuclear Energy, vol. 31, no. 1-2, pp. 43–61, 1997. View at Google Scholar · View at Scopus
  6. M. J. Driscoll, M. A. Pope, and P. Hejzlar, “Self-actuated reactivity insertion device for GFR service,” Transactions of the American Nuclear Society, vol. 89, pp. 573–576, 2003. View at Google Scholar
  7. OECD, “Status of LMFBR safety technology improving the performance and reliability of protection and shutdown systems,” OECD CSNI-R-69:0, 1983. View at Google Scholar
  8. K. Marten and H. Hoffmann, “Fluid dynamic investigations of snr-300 absorbers of the first and second shutdown unit,” Tech. Rep., Karlsruhe Nuclear Research Center, 1980. View at Google Scholar
  9. F. H. Morgenstern, F. Brandl, V. Ertel, and A. Schoensiegel, “The plant protection system of the SNR-300,” in Proceedings of the IEEE International Meeting on Fast Reactor Safety Technology, pp. 2602–2611, 1979.
  10. S. Vanmaercke, G. van den Eynde, E. Tijskens, and Y. Bartosiewicz, “Design of a complementary scram system for liquid metal cooled nuclear reactors,” Nuclear Engineering and Design, vol. 243, pp. 87–94, 2012. View at Publisher · View at Google Scholar
  11. D. B. Pelowitz, MCNPX User Manual, RSICC, 2005.
  12. G. Van Den Eynde, E. Malambu, H. A. Abderrahim et al., “Neutronic design of the XT-ADS core,” in Proceedings of the International Conference on the Physics of Reactors (PHYSOR '08), vol. 3, pp. 2110–2115, 2008.
  13. F. A. Dullien, Porous Media: Fluid Transport and Pore Structure, Academic Press, 1991.
  14. P. Van Liedekerke, E. Tijskens, E. Dintwa, J. Anthonis, and H. Ramon, “A discrete element model for simulation of a spinning disc fertilizer spreader,” Powder Technology, vol. 170, pp. 348–360, 2009. View at Google Scholar
  15. N. V. Brilliantov, F. Spahn, J. M. Hertzsch, and T. Pöschel, “Model for collisions in granular gases,” Physical Review E, vol. 53, no. 5, pp. 5382–5392, 1996. View at Google Scholar · View at Scopus
  16. G. Kuwabara and K. Kono, “Restitution coefficient in a collision between 2 spheres,” Japanese Journal of Applied Physics Part 1, vol. 26, no. 8, pp. 1230–1233, 1987. View at Google Scholar · View at Scopus
  17. P. Franken, S. Francois, E. Tijskens, and G. Degrande, “A tangential force-displacement model for elastic frictional contact between the particles in triaxial test simulations,” in Proceedings of the International Conference on Particle-Based Methods Fundamentals and Applications, Barcelona, Spain, 2011.
  18. L. Vu-Quoc and X. Zhang, “Accurate and efficient tangential force-displacement model for elastic frictional contact in particle-flow simulations,” Mechanics of Materials, vol. 31, no. 4, pp. 235–269, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. R. D. Mindlin and H. Deresiewicz, “Elastic spheres in contact under varying oblique forces,” ASME Journal Applied Mechanics, vol. 20, pp. 327–344, 1953. View at Google Scholar
  20. B. D. Lucas and T. Kanade, “An iterative image registration technique with application to stereo vision,” in Proceedings of Imaging Understanding Workshop, pp. 121–130, 1981.
  21. V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot, “Meshless methods: a review and computer implementation aspects,” Mathematics and Computers in Simulation, vol. 79, no. 3, pp. 763–813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Becker and M. Teschner, “Weakly compressible sph for free surface flows,” in Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Computer Animation, 2007.
  23. J. J. Monaghan, “Smoothed particle hydrodynamics,” Annual Review of Astronomy and Astrophysics, vol. 30, no. 1, pp. 543–574, 1992. View at Google Scholar · View at Scopus
  24. J. J. Monaghan, H. E. Huppert, and M. G. Worster, “Solidification using smoothed particle hydrodynamics,” Journal of Computational Physics, vol. 206, no. 2, pp. 684–705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Tartakovsky and P. Meakin, “Modeling of surface tension and contact angles with smoothed particle hydrodynamics,” Physical Review E, vol. 72, no. 2, Article ID 026301, pp. 1–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. J. E. Jones, “On the determination of molecular fields. from the equation of state of a gas,” Proceedings of the Royal Society of London Series A, vol. 106, pp. 463–477, 1924. View at Google Scholar