Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012 (2012), Article ID 515468, 6 pages
http://dx.doi.org/10.1100/2012/515468
Research Article

Double-Grating Displacement Structure for Improving the Light Extraction Efficiency of LEDs

1College of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
2Mechanical Science and Engineering Institute, Northeast Petroleum University, Daqing 163318, China

Received 1 September 2012; Accepted 18 September 2012

Academic Editors: B. Chen, T. Han-Song, and C. Zhan-Ming

Copyright © 2012 Zhibin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. Gu, T. Qiu, W. Zhang, and P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance,” Nanoscale Research Letters, vol. 6, no. 1, article 199, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Mills and A. Jacobson, “From carbon to light: a new framework for estimating greenhouse gas emissions reductions from replacing fuel-based lighting with LED systems,” Energy Efficiency, vol. 4, no. 4, pp. 523–546, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Lin, S. Liu, X. S. Zhang, B. L. Liu, and X. C. Ren, “Enhanced external quantum efficiency of light emitting diodes by fabricating two-dimensional photonic crystal sapphire substrate with holographic technique,” Acta Physica Sinica, vol. 58, no. 2, pp. 959–963, 2009. View at Google Scholar · View at Scopus
  4. N. Kourkoumelis and M. Tzaphlidou, “Eye safety related to near infrared radiation exposure to biometric devices,” TheScientificWorldJournal, vol. 11, pp. 520–528, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. L. E. Murdoch, M. MacLean, E. Endarko, S. J. MacGregor, and J. G. Anderson, “Bactericidal effects of 405nm light exposure demonstrated by inactivation of escherichia, salmonella, Shigella, Listeria, and mycobacterium species in liquid suspensions and on exposed surfaces,” The Scientific World Journal, vol. 2012, Article ID 137805, 8 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. D. H. Kim, C. O. Cho, Y. G. Roh et al., “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Applied Physics Letters, vol. 87, no. 20, Article ID 203508, 3 pages, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Trieu, X. Jin, A. Ellaboudy et al., “Top transmission grating GaN LED simulations for light extraction improvement,” in Physics and Simulation of Optoelectronic Devices XIX, vol. 7933 of Proceedings of SPIE, San Francisco, Calif, USA, January 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. C. M. Tsai, J. K. Sheu, W. C. Lai et al., “Enhanced output power in GaN-based LEDs with naturally textured surface grown by MOCVD,” IEEE Electron Device Letters, vol. 26, no. 7, pp. 464–466, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. W. Zhou, G. Min, Z. Song, J. Zhang, Y. Liu, and J. Zhang, “Enhanced efficiency of light emitting diodes with a nano-patterned gallium nitride surface realized by soft UV nanoimprint lithography,” Nanotechnology, vol. 21, no. 20, Article ID 205304, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. K. S. Kim, S. M. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung, “Enhancement of light extraction through the wave-guiding effect of ZnO sub-microrods in InGaN blue light-emitting diodes,” Advanced Functional Materials, vol. 20, no. 7, pp. 1076–1082, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. C. M. Lim and G. Hugh Song, “Design of superperiodic photonic-crystal light-emitting plates with highly directive luminance characteristics,” Journal of the Optical Society of America B, vol. 26, no. 2, pp. 328–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. A. David, H. Benisty, and C. Weisbuch, “Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs,” IEEE/OSA Journal of Display Technology, vol. 3, no. 2, pp. 133–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. D. H. Long, I. K. Hwang, and S. W. Ryu, “Design optimization of photonic crystal structure for improved light extractionof GaN LED,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 15, no. 4, pp. 1257–1263, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Physics Reports, vol. 498, no. 4-5, pp. 189–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. T. A. Truong, L. M. Campos, E. Matioli et al., “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Applied Physics Letters, vol. 94, no. 2, Article ID 023101, 3 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. V. K. Komarala, W. H. Guo, and M. Xiao, “Surface plasmon density of states at the metal-dielectric interface: dependence of metal layer thickness and dielectric material,” Journal of Applied Physics, vol. 107, no. 1, Article ID 014309, 5 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Z. Lin, K. Li, F. M. Kong, J. Zhao, L. G. Du, and H. Gao, “Comprehensive numeric study of gallium nitride light-emitting diodes adopting surface-plasmon-mediated light emission technique,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 17, no. 4, pp. 942–951, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Wu, J. W. Haus, Q. Zhan, and R. L. Nelson, “Plasmonic notch filter design based on long-range surface plasmon excitation along metal grating,” Plasmonics, vol. 3, no. 2-3, pp. 103–108, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. S. H. Choi, S. J. Kim, and K. M. Byun, “Characteristics of light emission from surface plasmons based on rectangular silver gratings,” Optics Communications, vol. 283, no. 14, pp. 2961–2966, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings, Springer, Berlin, Germany, 1998.
  21. S. Glasberg, A. Sharon, D. Rosenblatt, and A. A. Friesem, “Long-range surface plasmon resonances in grating-waveguide structures,” Applied Physics Letters, vol. 70, no. 10, pp. 1210–1212, 1997. View at Google Scholar · View at Scopus
  22. K. S. Yee and J. S. Chen, “The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations,” IEEE Transactions on Antennas and Propagation, vol. 45, no. 3, pp. 354–363, 1997. View at Google Scholar · View at Scopus
  23. X. Zhou and W. Lin, “Numerical stability and numerical dispersion of compact conformal mapping 2D-FDTD method used for the dispersion analysis of waveguides,” International Journal of Infrared and Millimeter Waves, vol. 20, no. 7, pp. 1403–1412, 1999. View at Google Scholar · View at Scopus
  24. M. T. Bettencourt, “Flux limiting embedded boundary technique for electromagnetic FDTD,” Journal of Computational Physics, vol. 227, no. 6, pp. 3141–3158, 2008. View at Publisher · View at Google Scholar · View at Scopus