Table of Contents Author Guidelines Submit a Manuscript
The Scientific World Journal
Volume 2012, Article ID 841636, 7 pages
http://dx.doi.org/10.1100/2012/841636
Research Article

Case Study on Incentive Mechanism of Energy Efficiency Retrofit in Coal-Fueled Power Plant in China

1Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2Beijing Climate Change Response Research and Education Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
3Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Scientific Research Institute of the Ministry of Agriculture, Chengdu 610041, China
4Water Environment System Project Laboratory, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
5Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Received 6 September 2012; Accepted 31 October 2012

Academic Editors: B. Chen, Z.-M. Chen, and H.-S. Tang

Copyright © 2012 Donghai Yuan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. M. L. Wigley, R. Richels, and J. A. Edmonds, “Economic and environmental choices in the stabilization of atmospheric CO2 concentrations,” Nature, vol. 379, no. 6562, pp. 240–243, 1996. View at Google Scholar · View at Scopus
  2. G. J. Boer, G. Flato, and D. Ramsden, “A transient climate change simulation with greenhouse gas and aerosol forcing: projected climate to the twenty-first century,” Climate Dynamics, vol. 16, no. 6, pp. 427–450, 2000. View at Google Scholar · View at Scopus
  3. Z. Z. Hu, S. Yang, and R. Wu, “Long-term climate variations in China and global warming signals,” Journal of Geophysical Research D, vol. 108, no. 10, pp. 4614–4626, 2003. View at Google Scholar
  4. B. Bai, X. Li, Y. Liu, and Y. Zhang, “Preliminary study on CO2 industrial point sources and their distribution in China,” Chinese Journal of Rock Mechanics and Engineering, vol. 25, no. 2, pp. 2918–2923, 2006. View at Google Scholar · View at Scopus
  5. The Climate Group, “Delivering low carbon growth: a guide to China's 12th Five Year Plan,” 2011.
  6. M. I. Hoffert, K. Caldeira, G. Benford et al., “Engineering: advanced technology paths to global climate stability: energy for a greenhouse planet,” Science, vol. 298, no. 5595, pp. 981–987, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. D. Mollicone, F. Achard, S. Federici et al., “An incentive mechanism for reducing emissions from conversion of intact and non-intact forests,” Climatic Change, vol. 83, no. 4, pp. 477–493, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. UNFCCC/CCNUCC, “Approved baseline and monitoring methodology AM0062: energy efficiency improvements of a power plant through retrofitting turbines,” AM0062/Version 02, Sectoral Scope: 01, EB 55.
  9. UNFCCC/CCNUCC, “Methodological tool “combined tool to identify the baseline scenario and demonstrate additionality” (Version 04.0.0),” EB 66, Report Annex 48.
  10. UNFCCC/CCNUCC, “Methodological tool “tool to calculate the emission factor for an electricity system” (Version 02.2.1),” EB 63, Report Annex 19.
  11. UNFCCC/CCNUCC, “Methodological tool “tool to calculate project or leakage CO2 emissions from fossil fuel combustion” (Version 02),” EB 41, Report Annex 11.
  12. UNFCCC/CCNUCC, “Methodological tool “tool to calculate the emission factor for an electricity system” (Version 02.2.1),” EB 63, Report Annex 19.
  13. State Power Corporation, “Trial Implementation Methods for Economic Assessment of technology retrofit Project in Power Engineering,” 2003.
  14. P. Hoeller and M. Wallin, “Energy prices, taxes and carbon dioxide emissions,” OECD Economics and Statistics Department Working Papers 106, Organisation for Economic Co-operation and Development, Paris, Farnce, 1991. View at Google Scholar
  15. A. Staudt, Understanding and Responding to Global Climate Change: Highlights of National Academies Reports, National Academy of Sciences, 2008.
  16. EU Emissions Trading System (EU ETS), “UK Department of Energy and Climate Change,” 2009.
  17. R. S. J. Tol, “The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties,” Energy Policy, vol. 33, no. 16, pp. 2064–2074, 2005. View at Publisher · View at Google Scholar · View at Scopus