Research Article  Open Access
Cyrille Gardès, Sonia Bagumako, Ludovic Desplanque, Nicolas Wichmann, Sylvain Bollaert, François Danneville, Xavier Wallart, Yannick Roelens, "100 nm AlSb/InAs HEMT for UltraLowPower Consumption, LowNoise Applications", The Scientific World Journal, vol. 2014, Article ID 136340, 6 pages, 2014. https://doi.org/10.1155/2014/136340
100 nm AlSb/InAs HEMT for UltraLowPower Consumption, LowNoise Applications
Abstract
We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in lowpower regime. Extrinsic cutoff frequencies of 100/125 GHz together with minimum noise figure dB and associated gain dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for highfrequency operation combined with lownoise performances in ultralowpower regime.
1. Introduction
Though the best high frequency performances are obtained for InAlAs/InGaAs HEMT technology which is more mature [1], AlSb/InAs HEMTs are potentially excellent candidates for lowvoltage, lowpower consumption operation in the case of highspeed analog and digital applications [2]. AlSb/InAs heterostructures are grown since the 1980s [3, 4], but AlSb/InAs HEMT with noticeable RF figuresofmerit and amplifiers with interesting lownoise performances have only been obtained since the last ten years [5, 6].
The best extrinsic of 303 GHz has been reached for a transistor with 120 nm gate length at drain bias of 0.44 V [7]. The main modifications regarding our previous work [7, 8] lie in an optimization of heterostructure growth conditions [9], no ohmic cap layer [10], and the use of alternative metallic gate stack [11]. With this technology, the highest combination of cutoff frequencies obtained simultaneously for AlSb/InAs HEMTs has recently been shown at mV [10], beyond previous record of 260/280 GHz reported for 100 nm HEMT at mV [12]. Cutoff frequencies of 290/335 GHz were obtained for a 120 nm HEMT. We presently focus on HEMT operation in mobility regime ( mV) in which we will demonstrate that no impact ionization occurs. In these low drain bias conditions, corresponding to ultralowpower dissipation, previous works report of 112/107 GHz for ( V; mW/mm) [5] and of 143/115 GHz at ( V; mW/mm) [7]. In this study, we present a full set of characteristics at mV regarding DC, HF, and noise performances, extracting RF figuresofmerit, extrinsic and intrinsic parameters, and noise parameters obtained from smallsignal equivalent circuit with noise sources.
2. Heterostructure and Device Fabrication
2.1. Heterostructure
The AlSb/InAs heterostructure was grown by molecular beam epitaxy on 3inche semiinsulating GaAs substrate. A thick AlSb buffer is used to accommodate the large lattice mismatched between 6.1 Å materials and GaAs substrate. Then, the structure consists of a 120 Å InAs channel, a 65 Å AlSb spacer, a Te δdoping plane, and a composite Schottky barrier with a 25 Å Al_{0.8}Ga_{0.2}Sb layer and a 50 Å Al_{0.5}In_{0.5}As layer (Figure 1). The Al_{0.5}In_{0.5}As layer in the composite Schottky barrier avoids oxidation of Al_{0.8}Ga_{0.2}Sb with air exposure and acts as a hole barrier [13]. Hall measurements at room temperature exhibit a sheet carrier density of 1.5 × 10^{12} cm^{−2} and electron mobility of 26000 cm²/(Vs), giving sheet resistance of 160 Ω/□.
2.2. Device Fabrication
HEMTs fabrication starts with ohmic contact evaporation of Pd/Pt/Au after ebeam lithography, followed by rapid thermal annealing at 275°C. Despite the absence of highly doped cap layer in the heterostructure, contact resistance, obtained by transmissionline model measurements, is still below 0.05 Ω·mm. Schottky Tgate is realized using bilayer resist ebeam lithography process and Mo/Pt/Au metallization. Then, Ti/Au bonding pads are evaporated. Finally, the active area is defined by chemical deep mesa isolation using HF/H_{2}O_{2} solution to completely remove the AlSb buffer, leading to airbridge gate. Device features are a twofinger 100 nm long gate with 2 × 25 μm transistor width (Figure 2). Sourcedrain spacing is 1.2 μm.
3. Static and Dynamic Measurements
Drain currentvoltage characteristics are plotted in Figure 3. Pinchoff voltage is −1.0 V. Maximum drain currents are 220 mA/mm and 620 mA/mm for drain bias of 80 mV and 240 mV, respectively. These are similar to our previous results [7, 8] despite the higher sheet resistance of the heterostructure and the higher sourcedrain spacing in the present device.
HF measurement setup consists in a 67 GHz Agilent PNA for parameters onwafer measurements and an Agilent HP4142 generator for DC biasing. Extrinsic current gain and unilateral power gain for mV and mV at peak are presented in Figure 4. Cutoff frequencies (, ) obtained simultaneously at mV are (108 GHz, 129 GHz) for power dissipation mW/mm and (232 GHz, 250 GHz) at mV for mW/mm. is calculated as , with power consumption in the gate being negligible.
In Figure 5, the evolution of extrinsic cutoff frequencies is plotted as a function of for mV and mV. This evidences the ability of AlSb/InAs HEMT for RF performances in low drain bias regime. In fact, (, ) are (100 GHz, 125 GHz) for mW/mm at mV. The DC power consumption at mV for reaching the same cutoff frequencies is, respectively, 30 mW/mm and 22 mW/mm. Consequently, to get the same RF performances in more standard drain bias conditions, power consumption must be at least 5 times higher.
Finally, intrinsic and extrinsic parameters have been extracted from the smallsignal equivalent circuit (SSEC) presented in Figure 6.
Resistance parallel to and current source parallel to output conductance to account, respectively, for gate leakage current and impact ionization have been added to the classical model. Indeed, there is impact ionization in AlSb/InAs HEMT at high drain bias with an increase of gate current and a typical bellshape of the  characteristic [14], which is a signature of impact ionization in DC measurements. With RF characterization, impact ionization results in parameter evolving from inductive to capacitive behaviour with increasing frequency as can be seen for mV in Figure 7. In the literature, this phenomenon in HEMTs has been modelised with a lowpass filter [15]. We prefer to introduce an additional current source controlled by gatedrain voltage as realized by Isler [16] to account for impact ionization effects. This model allows to perfectly fit scattering parameters at mV and mV as shown in Figure 7.
Parameters extracted from the SSEC at peak are presented in Table 1. is much higher at mV compared to mV, which is relevant of much lower gate leakage current, and is negligible at mV, which stresses that there is no impact ionization at this drain voltage.

4. Noise Measurements
Regarding low impact ionization occurring at mV as shown above with RF wideband measurements, SSEC with noise sources as presented in Figure 8 is used. For the sake of simplicity, there is no current source accounting for impact ionization since extracted value of at mV is negligible. As a consequence, no additional noise source, which should probably be correlated with output noise current or even input noise voltage, is required for extraction of accurate parameters values. We extracted the following noise parameters using method [17]: minimum noise figure , associated gain , noise equivalent resistance , and output noise temperature at 12 GHz (Figures 9 and 10). is 0.5 dB and is 12 dB for 4 mW/mm power dissipation. As a comparison, we should quote results obtained by Ma et al. [5] for 2 × 20 μm HEMT with above 0.5 dB at 12 GHz in the “best bias conditions for minimum noise figure.” The present results should also be compared with similar and reported in literature for AlSb/InAs HEMTs but with 50% higher DC power consumption of 6 mW/mm at mV [6, 18]. In the present case, at mV, , and are optima for mW/mm and it is important to underline that it would be impossible to reach these noise performances at mV with such lowpower consumption. Despite an accurate extraction of noise parameters under high drain bias is not done here, the element values would obviously be degraded due to the higher gate voltage required to operate in lowpower regime, which would increase shot noise. Then, drain polarization of transistor at mV allows an excellent compromise between noise performances and power dissipation.
5. Conclusion
In this study, we reported on microwave and noise performances in lowpower regime of AlSb/InAs HEMTs with optimized heterostructure. Combined (, ) of (100 GHz, 125 GHz) have been obtained at mV and DC power consumption of 4 mW/mm, performances that cannot be reached at mV for such a low power dissipation. A smallsignal equivalent circuit was established and demonstrated that impact ionization effects at mV are negligible, which is not the case for mV. This allowed an accurate extraction of noise parameters thanks to SSEC with noise sources fully reliable in mobility regime. dB and dB have been obtained at 12 GHz for ( mV; mW/mm). These results exhibit the high suitability of AlSb/InAs HEMTs for combined RF and lownoise performances in ultralowpower dissipation regime.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgments
This work is supported by the National Research Agency under Projects Low IQ (no. ANR08NANO022) and SMIC (no. ANR11ASTR03103).
References
 W. Deal, X. B. Mei, K. M. K. H. Leong, V. Radisic, S. Sarkozy, and R. Lai, “THz monolithic integrated circuits using InP high electron mobility transistors,” IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 25–32, 2011. View at: Publisher Site  Google Scholar
 B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, “Antimonidebased compound semiconductors for electronic devices: a review,” SolidState Electronics, vol. 49, no. 12, pp. 1875–1895, 2005. View at: Publisher Site  Google Scholar
 C.A. Chang, L. L. Chang, E. E. Mendez, M. S. Christie, and L. Esaki, “Electron densities in InAsAlSb quantum wells,” Journal of Vacuum Science & Technology B, vol. 2, no. 2, pp. 214–216, 1984. View at: Publisher Site  Google Scholar
 G. Tuttle and H. Kroemer, “An AlSb/InAs/AlSb quantum well HFT,” IEEE Transactions on Electron Devices, vol. 34, no. 11, p. 2358, 1987. View at: Google Scholar
 B. Y. Ma, J. Bergman, P. Chen et al., “InAs/AlSb HEMT and its application to ultralowpower wideband highgain lownoise amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4448–4454, 2006. View at: Publisher Site  Google Scholar
 W. R. Deal, R. Tsai, M. D. Lange, J. Brad Boos, B. R. Bennett, and A. Gutierrez, “A low power/low noise MMIC amplifier for phasedarray applications using InAs/AlSb HEMT,” in Proceedings of the IEEE MTTS International Microwave Symposium Digest, pp. 2051–2054, June 2006. View at: Publisher Site  Google Scholar
 Y. Roelens, A. Olivier, L. Desplanque et al., “Tellurium δdoped 120 nm AlSb/InAs HEMTs: towards sub100 mV electronics,” in Proceedings of the 68th Device Research Conference (DRC '10), pp. 53–54, June 2010. View at: Publisher Site  Google Scholar
 A. Olivier, A. Noudeviwa, N. Wichmann et al., “High frequency performance of tellurium δdoped AlSb/InAs HEMTs at low power supply,” in Proceedings of the 5th Microwave Integrated Circuits Conference (EuMIC '10), pp. 162–165, Paris, France, October 2010. View at: Google Scholar
 L. Desplanque, S. El Kazzi, J. Codron L et al., “AlSb nucleation induced anisotropic electron mobility in AlSb/InAs HEMTs heterostructures on GaAs,” Applied Physics Letters, vol. 100, no. 26, pp. 262103–262104, 2012. View at: Publisher Site  Google Scholar
 C. Gardès, S. M. Bagumako, L. Desplanque et al., “120 nm AlSb/InAs HEMT without gate recess: 290 GHz f_{T} and 335 GHz f_{max},” in Proceedings of the International Conference on Indium Phosphide and Related Materials (IPRM '13), pp. 1–2, Kobe, Japan, 2013. View at: Publisher Site  Google Scholar
 Y. C. Chou, L. J. Lee, J. M. Yang et al., “The effect of gate metals on manufacturability of 0.1 µm metamorphic AlSb/InAs HEMTs for ultra lowpower applications,” in Proceedings of the 20th International Conference on Indium Phosphide and Related Materials (IPRM '08), pp. 1–14, May 2008. View at: Publisher Site  Google Scholar
 R. Tsai, M. Lange, L. J. Lee et al., “260 GHz f_{T}, 280 GHz f_{max} AlSb/InAs HEMT technology,” in Proceedings of the 63rd Device Research Conference (DRC '05), pp. 257–258, June 2005. View at: Publisher Site  Google Scholar
 J. Brad Boos, W. Kruppa, B. R. Bennett et al., “AlSb/InAs HEMT's for lowvoltage, highspeed applications,” IEEE Transactions on Electron Devices, vol. 45, no. 9, pp. 1869–1875, 1998. View at: Publisher Site  Google Scholar
 G. Moschetti, M. Abbasi, PerAke Nilsson et al., “True planar InAs/AlSb HEMTs with ionimplantation technique for lowpower cryogenic applications,” SolidState Electronics, vol. 79, pp. 268–273, 2013. View at: Publisher Site  Google Scholar
 C. Teyssandier, F. de Groote, R. Sommet et al., “Characterization and modeling of impact ionization effects on small and large signal characteristics of AlGaAs/GaInAs/GaAs PHEMTs,” in Proceedings of the 3rd European Microwave Integrated Circuit Conference (EuMIC '08), pp. 119–122, Amsterdam, The Netherlands, October 2008. View at: Publisher Site  Google Scholar
 M. Isler, “Investigation and modeling of impact ionization in HEMTs for DC and RF operating conditions,” SolidState Electronics, vol. 46, no. 10, pp. 1587–1593, 2002. View at: Publisher Site  Google Scholar
 G. Dambrine, H. Happy, F. Danneville, and A. Cappy, “New method for on wafer noise measurement,” IEEE Transactions on Microwave Theory and Techniques, vol. 41, no. 3, pp. 375–381, 1993. View at: Publisher Site  Google Scholar
 R. Tsai, R. Grundbacher, M. Lange et al., “Manufacturable AlSb/InAs HEMT technology for ultralow power millimeterwave integrated circuits,” in Proceedings of the Mantech Conference, pp. 69–72, 2004. View at: Google Scholar
Copyright
Copyright © 2014 Cyrille Gardès et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.